• 제목/요약/키워드: Six Sigma Optimization

검색결과 39건 처리시간 0.02초

Road Noise 개선을 위한 CAE 기반 DFSS Study (CAE-based DFSS Study for Road Noise Reduction)

  • 권우성;유봉준;김병훈;김인동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.735-741
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized $95^{th}$ percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

  • PDF

호주 신차안전도평가의 하부다리 상해치 개선을 위한 경차의 Footrest 형상 최적화 (Footrest design optimization of a small vehicle to improve ANCAP lower leg injury)

  • 김요셉;이만수;남정인;한재녕
    • 자동차안전학회지
    • /
    • 제7권1호
    • /
    • pp.27-32
    • /
    • 2015
  • In order to protect occupant during car crash accident, Regulation and NCAP(New Car assessment Program) have been developed among various countries like U.S.A., Europe, Korea and Australia. Especially NCAP scores affect to sales of vehicles. So vehicle makers are trying to get good score in NCAP. Low leg injuries play an important role in Australia and Euro NCAP and these injuries are related with footrest design. Optimization of footrest design in early stage of vehicle development is necessary to obtain better and robust results of low legs during crash tests. In this paper, DFSS method and finite element model were used to optimize the low leg performance in small RHD vehicles. Compared with the lower leg injury of base model, the lower leg injury of proposed model was slightly improved and robustness was enhanced also.

로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구 (CAE-based DFSS Study for Road Noise Reduction)

  • 권우성;유봉준;김병훈;김인동
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

대형차량의 프레스타입 도어힌지 적용을 위한 최적화 연구 (The Optimization of the Press-type Door Hinge of the Full-sized Car)

  • 양지혁
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.48-55
    • /
    • 2010
  • The Door hinge is a very important part for door sagging performance of a vehicle. It is divided into two classes as a forge- and press-type according to a manufacturing technique. The press-type door hinge is cheap, but shows low strength. To apply the press-type door hinge to a fullsized car with satisfactory door sagging performance, we optimized the design parameters of the door hinge using the DFSS method. As a result, the effective design parameters of the press-type door hinge with good door sagging performance were obtained.

불량률 최소화를 통한 강건 최적화의 확률제한조건 처리 (Solving Probability Constraint in Robust Optimization by Minimizing Percent Defective)

  • 이광기;박찬경;김근연;이권희;한상욱;한승호
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.975-981
    • /
    • 2013
  • 강건 최적화 기법은 설계 초기 단계부터 설계변수의 변동이 목적함수에 미치는 효과를 최소화할 수 있는 유일한 방법이다. 강건 최적화의 정식화를 위해서는 분산을 정확히 예측하고 확률제한조건을 정식화하는 것이 가장 중요한 과정이 된다. 분산 및 확률제한조건을 예측하고 정식화하기 위한 방법으로 공정능력지수 및 식스시그마 기법과 같은 여러 가지 방법이 적용되고 있으나, 실제 공정에서 널리 적용되는 불량률을 이용한 확률제한조건 처리 기법에 대한 연구는 아직까지 전무한 상태이다. 본 연구에서는 자동차 로워암의 무게와 최대응력의 평균과 표준편차에 대한 설계영역을 탐색하고, 이후 로워암의 강건 최적화를 수행하였다. 변동을 예측하기 위한 표준편차의 계산은 2 차 테일러 전개를 통해 수치적인 정확도를 기하였다. 강건 최적화는 설계변수의 불연속성을 고려하기 위하여 최적화 과정에서 미분 정보를 적용하지 않은 심플렉스 알고리즘을 적용하였다.

통계적 기법을 활용한 플랜지형 휠베어링의 열간단조 공정 최적화 (Optimization of Hot Forging Process of Flange Type Wheel Bearings by Statistical Technique)

  • 이재성;문호근;송복한;허보영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2006
  • Due to the shape of spindle with small diameter and heavy section, rapid cooling is difficult. It is difficult to fabricate the tapered wheel bearings with fine microstructure. Thus, their mechanical characteristics, such as yield strength and fatigue resistance, decrease. Producing the tapered wheel bearings with good workability during orbital forming after hot forging, hot forging process with several process parameters was optimized by means of statistical technique of Six-Sigma scheme. As a result, the lower heating temperature is, the lower the hardness and yield strength of forgings are. Also, the faster conveyer velocity is, the lower the hardness and yield strength of forgings are. To avoid therefore occurrence of the surface rupture during orbital forming, the heating temperature should be controlled as low as possible and the conveyer velocity should be controlled as fast as possible.

  • PDF

디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석 (Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines)

  • 김용래;송한호
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

화학적 초미세 발포 사출성형을 이용한 에어컨 드레인 펜의 공정 최적화에 대한 연구 (A study on the process optimization of microcellular foaming injection molded air-conditioner drain pen)

  • 김주권;곽재섭;김준민;이준한;김종선
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, we applied microcellular foaming injection molding process to improve the performance of system air-conditioner drain fan which had been produced by injection molding process and studied the optimization of process conditions through 6-sigma process and response surface method (RSM) to reduce weight and deformation of products. Additive type, melt temperature, mold temperature, and injection screw shape were selected as the factor affecting the weight and deformation of the products by carrying out analysis of trivial many through ANOVA and design of experiment (DOE) method. Among the effect factor, we set the addictive type to Long G/F and screw shape to foaming screw which had the highest level of weight reduction and deformation reduction. The amount of foaming agent gas was set at 60 ml, which was the limit beyond which the weight of product did not decrease any more. For melt temperature and mold temperature, we studied the conditions where both weight and deformation were minimized using the RSM. As a result, we set the melt temperature to $250^{\circ}C$, fixed mold temperature to $20^{\circ}C$, and moving mold temperature to $40^{\circ}C$. The improvement effect was analyzed by appling the selected optimal conditions to the production process using the microcellular foaming injection molding. The results showed that the mean weight of product was measured to be 1,420g which was 19% lower than that measured in the current process. The standard deviations of the weights were found to be similar to those in the current process and it showed a low dispersion. The mean deformation was measured to be 0.9237mm, which represented a 57% reduction compared to the mean deformation in the current process, and the standard deviation decreased from 0.3298mm to 0.1398mm. Moreover, we analyzed the process capability for deformation, and the results showed that the short-term process capability increased from 2.73 to 6.60 which was even higher than targeted level of 6.0.

AE-MDB시험 시 인체모형 상해치에 대한 시험 인자 영향성 연구 (The Study on influence of test factors for WorldSID injury through AE-MDB side crash test)

  • 선홍열;한표경;오은경;윤일성
    • 자동차안전학회지
    • /
    • 제7권1호
    • /
    • pp.7-12
    • /
    • 2015
  • NCAP(New Car Assessment Program) makes vehicle manufacturer improve safety performance through free competition and customers guarantee vehicle selection by providing information of vehicle safety. That's why it is important not only to meet the regulation, but also to cope with NCAP. EuroNCAP(European New Car Assessment Program) side tests have conducted by using Progressive MDB and Euro SID II in order to reproduce crash test between two vehicles over 10 years. However various researches report that Progressive MDB and Euro SID II do not reflect evolving vehicle design, impact performance and biofidelity of human. Therefore EuroNCAP has the plan to conduct AE-MDB side crash test using WorldSID which is more evolved from 2015 by replacing Progressive MDB and EuroSID II. Automobile manufacturers need to develop safety performance for new test closely. This paper is to find test set-up parameters which affect into dummy injury instead of restraint system and to research on its tendency. It is processed with mini and small car to know influence as changing vehicle size and also analyzed by DFSS(Design for six sigma) which is one of optimization tools. DFSS is vaildated by simulating CAE with L18 orthogonal array of 6 control factors adjustable as EuroNCAP requirement.