• 제목/요약/키워드: Site-direct mutagenesis

검색결과 15건 처리시간 0.029초

Site-Directed Mutagenesis of Two Cysteines (155, 202) in Catechol 1,2-dioxygenase $I_1$ of Acinetobacter lwoffii K24

  • Kim, Seung-Il;Kim, Soo-Jung;Leem, Sun-Hee;Oh, Kye-Heon;Kim, Soo-Hyun;Park, Young-Mok
    • BMB Reports
    • /
    • 제34권2호
    • /
    • pp.172-175
    • /
    • 2001
  • Catechol 1,2-dioxygenase $I_1$ ($CDI_1$) is the first enzyme of the $\beta$-ketoadipate pathway in Acinetobacter lowffii K24. $CDI_1$ has two cysteines (155, 202) and its enzyme activity is inhibited by the cysteine inhibitor, $AgNO_3$. Two mutants, $CDI_1$ C155V and $CDI_1$ C202V, were obtained by site-directed mutagenesis. The two mutants were overexpressed and the mutated amino acid residues (Cys$\rightarrow$Val) were characterized by peptide mapping and amino acid sequencing. Interestingly, $CDI_1$ C155V was inhibited by $AgNO_3$, whereas $CDI_1$ C202V was not inhibited. This suggests that $Cys^{202}$ is the sole inhibition site by $AgNO_3$ and is close to the active site of the enzyme. However, the results of the biochemical assay of mutated $CDI_1s$ suggest that the two cysteines are not directly involved in the activity of the catechol 1,2-dioxygenase of $CDI_1$.

  • PDF

Site-Directed Mutagenesis를 이용하여 변이된 돼지 성장 호르몬 결합 단백질의 대장균 내 발현과 정제 (Expression and Purification of Mutated Porcine Growth Hormone Binding Protein by Using Site-Directed Mutagenesis in E. coli)

  • Choi, K.H.;Chung, K. S.;Lee, H.T.
    • 한국가축번식학회지
    • /
    • 제25권4호
    • /
    • pp.381-388
    • /
    • 2001
  • 본 연구는 돼지에서 성장호르몬과 결합되는 부위에 변이를 유도하여 결합력이 향상된 성장호르몬 결합단백질을 획득하기 위하여 수행되었다. 돼지의 지방으로부터 얻은 성장호르몬 수용체 RNA 내 성장호르몬 결합단백질 부분을 756 bp의 cDNA로 전향하고 클로닝한 후 site-directed mutagenesis 방법을 이용하여 26과 122번째 아미노산을 변이시켰다. 26번째 아미노산은 성장 호르몬과의 결합에 관련이 있다고 알려져 있는 돼지 성장호르몬 수용체 외막에 존재하는 다섯 군데의 N-linked glycosylation 부위와 가까이 위치한 부분이고, 122번째 아미노산은 소에서의 결합부위로 알려져 있다. 이렇게 변이를 유도한 성장호르몬 결합 단백질을 pET-32(c) 발현벡터에 삽입시키고 과발현시켰고 이를 정제하여 30 kDa의 변이를 유도한 성장호르몬 결합 단백질을 얻었다. 이러한 방법으로 성장호르몬 결합 단백질을 성장기에 있는 세포나 동물에 주입한다면 보다 향상된 성장을 볼 수 있을 것으로 사료된다.

  • PDF

Site-Directed Mutagenesis on Putative Macrolactone Ring Size Determinant in the Hybrid Pikromycin-Tylosin Polyketide Synthase

  • Jung, Won-Seok;Kim, Eung-Soo;Kang, Han-Young;Choi, Cha-Yong;Sherman, David-H.;Yoon, Yeo-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.823-827
    • /
    • 2003
  • Streptomyces venezuelae ATCC 15439 is notable in its ability to produce two distinct groups of macrolactones. It has been reported that the generation of two macrolactone structures results from alternative expression of pikromycin (Pik) polyketide synthase (PKS). It was previously reported that the hybrid pikromycin-tylosin PKS can also produce two different macrolactones but its mechanistic basis remains unclear. In order to address this question, a series of site-directed mutagenesis of tentative alternative ribosome binding site and translation start codons in tylGV were performed. The results suggest that macrolactone ring size is not determined by the alternative expression of TylGV but through other mechanism(s) involving direct interaction between the PikAIII and TE domain or skipping of the final chain elongation step. This provides new insight into the mechanism of macrolactone ring size determination in hybrid PKS as well as an opportunity to develop novel termination activities for combinatorial biosynthesis.

Expression of Thiol-Dependent Protector Protein from Yeast Enhances the Resistance of Escherichia coli to Menadione

  • Park, Jeen-Woo;Ahn, Soo-Mi;Kim, Eun-Ju;Lee, Soo-Min
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.513-518
    • /
    • 1996
  • A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiolcontaining oxidation system but not against an oxidation system without thiol. This 25-kDa protein was thus named thiol-dependent protector protein (TPP). The role of TPP in the cellular defense against oxidative stress was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPP (strain YP) and a mutant in which the catalytically essential amino acid in the active site of TPP (Cys-47) has been replaced with alanine by site-directed mutagenesis (strain YPC47A). There was a distinct difference between these two strains in regard to viability, modulation of activities of superoxide dismutase and catalase, and the oxidative damage of DNA upon exposure to menadione. These results suggest that TPP may play a direct role in the cellular defense against oxidative stress by functioning as an antioxidant protein.

  • PDF

Electrochemical Studies of Immobilized Laccases on the Modified-Gold Electrodes

  • Yoon Chang-Jung;Kim Hyug-Han
    • 전기화학회지
    • /
    • 제7권1호
    • /
    • pp.26-31
    • /
    • 2004
  • The direct electrochemical studies of four laccases (plant and fungal laccases) have been investigated on a gold electrode functionalized with a new tether of 2.2'-dithiosalicylic aldehyde. Results from these studies indicate that the redox potential of the active site of plant laccase from Rhus vernificera is shifted to a more negative value(255 mV versus SCE) than that of fungal laccase from Pyricularia oryzae (480 mV versus SCE). Mechanistic studies indicate that the reduction of type-1 Cu precedes the reduction of type-2 and type-3 Cu ions when the electrode is poised initially at different potentials. Also a new tether, 2.2'-dithiosalicylic aldehyde, has been used to study the redox properties of two laccases (LCCI and Lccla) covalently attached to a gold electrode. An irreversible peak at 0.47V vs. SCE is observed in the cyclic voltammorams of LCCI. In contrast, the cyclic voltammograms of LCCIa contain a quasi-reversible peak at 0.18V vs. SCE and an irreversible peak at 0.50V vs. SCE. We find that the replacement of the eleven amino acids a the C-terminus with a single cysteine residue $(i.e., \;LCCI{\rightarrow}LCCIa)$ influences the rate of heterogeneous electron transfer between an electrode and the copper containing active sites $(K_{het}\;for\;LCCI=1.0\times10^{-2}\;s^{-1}\;and\;K_{het}\;for\;LCCI_a= 1.0\;times10^{-1}\;s^{-1}\'at\;0.18V\;versus\;SCE\;and\;4.0\times10^{-2}\;s^{-1}\;at\;0.50V\; versus\;SCE)$. These results show for the first time that the change of the primary structure of a protein via site-directed mutagenesis influences both the redox potentials of the copper ions in the active site and the rate of heterogeneous electron transfer.

위치 지정 치환 변이를 이용한 ErmSF의 '타깃 Adenine Binding Loop'을 형성하는 부위에 존재하는 223/227 Arginine 잔기의 23S rRNA Methylation 활성에서의 역할 규명 (Site-directed Mutagenesis Analysis Elucidates the Role of 223/227 Arginine in 23S rRNA Methylation, Which Is in 'Target Adenine Binding Loop' Region of ErmSF)

  • 진형종
    • 미생물학회지
    • /
    • 제48권2호
    • /
    • pp.79-86
    • /
    • 2012
  • ErmSF는 23S rRNA의 A2058 (E. coli numbering)에 methylation을 유발하여 macrolide-lincosamide-streptogramin B ($MLS_B$)계 항생제의 부착을 저해함으로써 항생제 활성을 억제하는 내성인자 단백질인 Erm 단백질들 중의 하나이다. Erm 단백질들 사이에서 공통적으로 나타나는 $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) 서열은 Erm 단백질인 ErmC'와 DNA methyltransferase인 M. Taq I의 구조를 분석한 연구에서 타깃인 adenine과 직접적으로 상호작용하는 부위로 제안되거나 확인되었다. 따라서 이 부분 중 Erm 단백질 사이에서 잘 보존되어있지는 않지만 염기성인 잔기의 특성상 기질인 RNA와 상호작용이 예상되는 223, 227번 arginine을 alanine으로 위치 지정 치환한 변이 단백질을 이용하여 그 잔기의 효소 활성에서의 역할을 확인하였다. 두 변이 단백질은 생체 내에서 그 활성을 여전히 유지하고 있어서 항생제인 erythromycin에 대하여 내성을 나타내었으나 in vitro 상에서는 R223A 또는 R227A가 야생형 ErmSF에 비하여 약 50%, 88%의 활성을 각각 나타내어 효소 활성에서 각 잔기가 결정적이지는 않지만 중요한 역할을 수행하고 있음을 확인하였다.

유기인계 및 카바메이트계 농약의 고감수성 아세틸콜린에스테라이즈의 대량생산 (Mass-Production of Acetylcholinesterase Sensitive to Organophosphosphates and Carbamates Insecticides)

  • 김영미;김소미;조문제
    • Applied Biological Chemistry
    • /
    • 제46권4호
    • /
    • pp.353-360
    • /
    • 2003
  • 본 실험에서는 acetylcholinesterase(AChE, EC 3.1.1.7)를 이용한 간이 잔류농약 검사법에 필요한, 유기인계 및 카바메이트계 살충제에 대한 감수성이 증가된 AChE(MAChE)를 baculovirus를 이용하여 대량으로 생산하는 시스템을 구축하고 생산된 효소의 특성을 관찰하였다. 한라산에서 채취한 초파리에서 AChE의 cDNA를 합성한 후 PCR을 이용하여 AChE의 lipid anchor부분을 제거하고 site directed mutagenesis에 의해 E107Y, F368L, L408E의 염기서열을 변화시켜 재조합된 MAChE cDNA를 합성하였고 baculovirus vector에 삽입하여 대량생산을 시도하였다. 대량 증식에 필요한 조건으로 감염횟수가 네 번일 때, 그리고 세포수가 $2{\times}10^6$ cell/ml일 때 세포의 증식과 효소의 활성이 극대화됨을 알 수 있었다. His tag을 붙여 Ni-NTA affinity column을 이용하여 MAChE를 정제하였으며, 정제된 효소는 실험조건하에서는 pH(3-10)와 온도$(20-50^{\circ}C)$의 변화에 영향을 받지 않았다. 농약 추출액으로 methanol을 사용했을 때가 ethanol을 사용할 때 보다 효과적임을 알 수 있었다. 대표적인 유기인계와 카바메이트계 농약에 대한 저해율을 조사한 결과 재조합된 MAChE는 대만의 집파리 및 변형되지 않은 AChE에 비하여 전반적으로 농약에 대한 감수성이 높은 것으로 나타났다.

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Functional identification of protein phosphatase 1-binding consensus residues in NBCe1-B

  • Lee, Kyu Pil;Kim, Hyun Jin;Yang, Dongki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권1호
    • /
    • pp.91-99
    • /
    • 2018
  • Protein phosphatase 1 (PP1) is involved in various signal transduction mechanisms as an extensive regulator. The PP1 catalytic subunit (PP1c) recognizes and binds to PP1-binding consensus residues (FxxR/KxR/K) in NBCe1-B. Consequently, we focused on identifying the function of the PP1-binding consensus residue, $^{922}FMDRLK^{927}$, in NBCe1-B. Using site-directed mutagenesis and co-immunoprecipitation assays, we revealed that in cases where the residues were substituted (F922A, R925A, and K927A) or deleted (deletion of amino acids 922-927), NBCe1-B mutants inhibited PP1 binding to NBCe1-B. Additionally, by recording the intracellular pH, we found that PP1-binding consensus residues in NBCe1-B were not only critical for NBCe1-B activity, but also relevant to its surface expression level. Therefore, we reported that NBCe1-B, as a substrate of PP1, contains these residues in the C-terminal region and that the direct interaction between NBCe1-B and PP1 is functionally critical in controlling the regulation of the ${HCO_3}^-$ transport. These results suggested that like IRBIT, PP1 was another novel regulator of ${HCO_3}^-$ secretion in several types of epithelia.

Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/Notch-dependent cell-fate specification

  • Choi, Vit Na;Park, Seong Kyun;Hwang, Byung Joon
    • BMB Reports
    • /
    • 제46권4호
    • /
    • pp.219-224
    • /
    • 2013
  • The cell-fate specification of the anchor cell (AC) and a ventral uterine precursor cell (VU) in Caenorhabditis elegans is initiated by a stochastic interaction between LIN-12/Notch receptor and LAG-2/Delta ligand in two neighboring Z1.ppp and Z4.aaa cells. Both cells express lin-12 and lag-2 before specification, and a small difference in LIN-12 activity leads to the exclusive expressions of lin-12 in VU and lag-2 in the AC, through a feedback mechanism of unknown nature. Here we show that the expression pattern of lag-1/CSL, a transcriptional repressor itself that turns into an activator upon binding of the intracellular domain of Notch, overlaps with that of lin-12. Site-directed mutagenesis of LAG-1 binding sites in lag-1 maintains its expression in the AC, and eliminates it in the VU. Thus, AC/VU cell-fate specification appears to involve direct regulation of lag-1 expression by the LAG-1 protein, activating its transcription in VU cells, but repressing it in the AC.