• Title/Summary/Keyword: Site-Specific Performance

Search Result 184, Processing Time 0.023 seconds

Recent Trends of Advanced Biosensors for Mycotoxin Analysis

  • Shim, Won-Bo
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.35-35
    • /
    • 2016
  • A mycotoxin is a toxic secondary metabolite produced by organisms of the fungus kingdom, commonly known as molds and has been widely contaminated in agricultural products such as grains and cereals. Many methods including high performance liquid chromatography (HPLC) and gas chromatography (GC) have already been proposed and reviewed for mycotoxins. These methods are either expensive or time-consuming due to the complication of sample preparation and pre-concentration before determination. In addition, both methods are unsuitable for the routine screening of large sample numbers. A biosensor is a fictive analytical device that combines a biological component with a physicochemical detector for the detection of an analyte. Biosensors represent a rapidly expanding field, at the present time, with an estimated 60% annual growth rate; the major impetus coming from the health-care industry but with some pressure from other areas, such as food safety and environmental monitoring. Antibodies and aptamers are bioreceptors which have been used in the development of biosensors. There are many kinds of antibodies and aptamers specific to mycotoxin, and antibody (or aptamer)-based biosensors have been successfully developed for the detection of mycotoxin. The biosensors permit the rapid, sensitive, simple, and on-site detection of a range of mycotoxins and can be an alternative method to traditional methods such as HPLC and GC. This presentation provides the development trends of biosensors to mycotoxins and their application to food and agricultural products.

  • PDF

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

INTERNATIONAL COLLABORATION IN ASSESSMENT OF RADIOLOGICAL IMPACTS ARISING FROM RELEASES TO THE BIOSPHERE AFTER DISPOSAL OF RADIOACTIVE WASTE INTO GEOLOGICAL REPOSITORIES

  • Smith, Graham;Kato, Tomoko
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Geological disposal is designed to provide safe containment of radioactive waste for very long times, with the containment provided by a combination of engineered and geological barriers. In the extreme long term, after many thousands of years or longer, residual amounts of long-lived radionulides such as Cl-36, but also radionuclides in the natural decay chains, may be released into the environment normally accessed and used by humans, termed here, the biosphere. It is necessary to ensure that any such releases meet radiation protection objectives through the development of a safety case, which will include assessment of radiation doses to humans. The design of such dose calculations over such long timeframes is not straightforward, because of the range of potentially relevant assumptions which could be made, concerning environmental change and changes in human behavior. These conceptual uncertainties are additional to those that more typically arise, for example, in the assessment of present day situations, but which also have to be addressed. The issue has therefore been subject to international cooperation for many years. This paper summarizes the evolution and results of that collaboration leading up to the present day, taking account of developments in international recommendations on radiation protection objectives and the more recent greater focus on preparation of site specific safety cases.

SIMULATED AP1000 RESPONSE TO DESIGN BASIS SMALL-BREAK LOCA EVENTS IN APEX-1000 TEST FACILITY

  • Wright, R.F.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.287-298
    • /
    • 2007
  • As part of the $AP1000^{TM}$ pressurized water reactor design certification program, a series of integral systems tests of the nuclear steam supply system was performed at the APEX-1000 test facility at Oregon State University. These tests provided data necessary to validate Westinghouse safety analysis computer codes for AP1000 applications. In addition, the tests provided the opportunity to investigate the thermal-hydraulic phenomena expected to be important in AP1000 small-break loss of coolant accidents (SBLOCAs). The APEX-1000 facility is a 1/4-scale pressure and 1/4-scale height simulation of the AP1000 nuclear steam supply system and passive safety features. A series of eleven tests was performed in the APEX-1000 facility as part of a U.S. Department of Energy contract. In all, four SBLOCA tests representing a spectrum of break sizes and locations were simulated along with tests to study specific phenomena of interest. The focus of this paper is the SBLOCA tests. The key thermal-hydraulic phenomena simulated in the APEX-1000 tests, and the performance and interactions of the passive safety-related systems that can be investigated through the APEX-1000 facility, are emphasized. The APEX-1000 tests demonstrate that the AP1000 passive safety-related systems successfully combine to provide a continuous removal of core decay heat and the reactor core remains covered with considerable margin for all small-break LOCA events.

Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea

  • Kim, Chanyoung;Cha, Eun Jeong;Shin, Myoungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.386-400
    • /
    • 2022
  • Seismic fragility analysis, a part of seismic probabilistic risk assessment (SPRA), is commonly used to establish the relationship between a representative property of earthquakes and the failure probability of a structure, component, or system. Current guidelines on the SPRA of nuclear power plants (NPPs) used worldwide mainly reflect the earthquake characteristics of the western United States. However, different earthquake characteristics may have a significant impact on the seismic fragility of a structure. Given the concern, this study aimed to investigate the effects of earthquake characteristics on the seismic fragility of concrete containments housing the OPR-1000 reactor. Earthquake time histories were created from 30 ground motions (including those of the 2016 Gyeongju earthquake) by spectral matching to the site-specific response spectrum of Hanbit nuclear power plants in South Korea. Fragility curves of the containment structure were determined under the linear response history analysis using a lumped-mass stick model and 30 ground motions, and were compared in terms of earthquake characteristics. The results showed that the median capacity and high confidence of low probability of failure (HCLPF) tended to highly depend on the sustained maximum acceleration (SMA), and increase when using the time histories which have lower SMA compared with the others.

Theatre of Imagination: Study on New Languages in the Theatre Experiment of Ara Kim (상상력의 연극 이미지의 무대구성작업에 관하여 김아라 연출작업에 나타난 새로운 무대언어)

  • Nam, Sangsik
    • Journal of Korean Theatre Studies Association
    • /
    • no.48
    • /
    • pp.261-288
    • /
    • 2012
  • This paper attempts to research on the new language in the directing of Ara Kim. She was cranky on working on the stage to experiment with her own style since the 1980s and so opened a new dawn in modern Korean theatre. She leaded the Korean experimental theatre. The background of this experiment is her idea on theatre. And here, we have to look the subject that she setted for the work in Chuksan: Ritual Past, Ritual Present. To her, the theatre has the function of ritual and fest. The theatre suggests universal tragedy given to human as natural life force and has its own agenda to drive people to healing. For it, Ara Kim explores archetypal forms and languages before the fragmentation of genres of art. Her theatre shows the results of experiments in which such languages are recreated with modernized sensibilities. We here, for example by outdoor performance in Chuksan Human Lear, try to interpret the aesthetic principles that body out her ritual theatre. And what we looked at though, is the base of the 'complex-genre-music-theatre', the methode to 'compose' the stage elements and put it all together. The directing of Ara Kim has, in terms of the composition of the stage elements, much of the indisputable artistic value. Her theatre is, so to speak, theatre of image, and it is theatre of imagination that completed by the audience's imagination. Human Lear which has its own characteristic in image fragments, convert the original Lear into a simple tale. It serves as background of the modern ritual that shows the most basic human instincts. We meet in Human Lear a ritual tale with some list of image for the human instincts. The arrangement of image, the montage of scene shows the performance as a kind of artistic space. In Human Lear the space is the natural one. It centers around the arena stage. The objects installed in the space changes it into the laboratory for 'seeing' the happening. The spectators see the performance and at the same time see themselves in the nature laboratory. They see, and equally, they are visible objects. They see the performance and us in the space in which the performance takes place. That is what Ara Kim with her modern ritual really aims. That aim is to this days still in effect. It is a major driver of her experiments to extend the boundary of the theatre. The ritualistic site-specific performance in Akor Wat, Cambodia, A Song of Mandala is the latest great product from her experiments. On the other hand, she continues on her way to experiment with pure stage elements. The 'Station' series(Station of Water, The Station of Sand, The Station of Wind) she recently showed are the non-verbal performance with all the stage elements: movement, sound, body, light, colour, objects and so on.

Getting Closer to Consumer Performance Experience: Research on Performance Experience Components through Online Post Analysis (소비자의 공연 경험에 다가가기 - 온라인 게시글 분석을 통한 공연 경험의 구성요소 탐구 -)

  • Ko, Yena;Lee, Joongseek;Kim, Eun-mee;Lee, Soomin
    • Korean Association of Arts Management
    • /
    • no.52
    • /
    • pp.75-105
    • /
    • 2019
  • In studying culture consumption today, it is essential to understand and analyze the actual visitors' experiences in detail. This is deeply related to the fact that we can utilize subjective experience records that were previously inaccessible as data since plenty of people actually record many performance experiences in the media space such as social media. This study attempts to examine what elements actually consists of people's performance experience based on actual expression of the performance experience that exists online. For this, we collected two types of data. First, we collected posts which required performance recommendation on online platforms such as Jisik-In and Cafes to see how people describe what they want and analyzed data focusing on the modifiers. Results show that people mainly use modifiers that reflect the specific situation of the individual such as companion or age. In addition we analyzed how the experience was described after the show through the review posts of ticket booking site. Results show how expressions are centered around companions, revisit intentions, and viewing experiences besides elements such as story and music, which have been known as main satisfaction elements of performance experience in previous studies. In addition, we discussed the practical implications and limitations of the study as well as the theoretical discussion.

ANALYSIS OF MINOCYCLINE IN TISSUE AND SERUM AFTER LOCAL APPLICATION OF MINOCYCLINE OINTMENT (by High-Performance Liquid Chromatography) (미노싸이클린 연고의 근육 내 투여 후 조직 및 혈중 약물농도의 분석 (High-Performance Liquid Chromatography를 이용하여))

  • Hwang, Hye-Wook;Lee, Sang-Chull;Kim, Sung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.304-310
    • /
    • 1999
  • This study was designed to find the effect of Minocycline loaded microcapsule applied locally to tissue by measuring drug concentration in tissue and serum by HPLC and to achieve optimal drug delivery system and duration to a specific target site. Control group were administrated minocycline intramuscularly twice a day with $0.2{\mu}g/100g$ for 1 to 10 days. In experimental group, surgical wound was created on Rt. cheek and then minocycline loaded microcapsule was applied into the space between superficial and deep layer of masseter muscle. Animals were sacrificed at 1, 3, 5, 7, 10 days after initial administration, blood was obtained from heart and right masseter muscle was excised. Blood sample was centrifuged at 3000rpm for 15min. Tissue sample was homogenized, left at room temperature for 48hr and centrifuged at 4000g for 5min. Supernatant was completely dried and dissolved in distilled water. Analysis was conducted using a ${\mu}Bondapack$ C18 column. The mobile phase was 0.2M Ammonium Oxalate/0.1M EDTA/DMF=11/4/5 solution, which was injected into the column and detected with photodiode detector at 344nm wavelength. The results were as follows : 1. This method was reliable, could be replicated and suitable for minocycline analysis in tissue as well as serum. 2. In tissue, concentration of minocycline of experimental group was higher than that of control group for 5days. 3. Except 1 day, concentration of minocycline in serum of experimental group was lower than that of control group. 4. Concentration of minocycline in tissue was much higher than that in serum. From these results, minocycline loaded microcapsule might be effective tool for local drug delivery system might be useful for treatment of infections of oral and maxillofacial region and management of infected surgical wound, minimizing systemic effects.

  • PDF

Turbidity Modeling for a Negative Buoyant Density Flow in a Reservoir with Consideration of Multiple Particle Sizes (입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링)

  • Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.365-377
    • /
    • 2008
  • Large artificial dam reservoirs and associated downstream ecosystems are under increased pressure from long-term negative impacts of turbid flood runoff. Despite various emerging issues of reservoir turbidity flow, turbidity modeling studies have been rare due to lack of experimental data that can support scientific interpretation. Modeling suspended sediment (SS) dynamics, and therefore turbidity ($C_T$), requires provision of constitutive relationships ($SS-C_T$) and accounting for deposition of different SS size fractions/types distribution in order to display this complicated dynamic behavior. This study explored the performance of a coupled two-dimensional (2D) hydrodynamic and particle dynamics model that simulates the fate and transport of a turbid density flow in a negatively buoyant density flow regime. Multiple groups of suspended sediment (SS), classified by the particle size and their site-specific $SS-C_T$ relationships, were used for the conversion between field measurements ($C_T$) and model state variables (SS). The 2D model showed, in overall, good performance in reproducing the reservoir thermal structure, flood propagation dynamics and the magnitude and distribution of turbidity in the stratified reservoir. Some significant errors were noticed in the transitional zone due to the inherent lateral averaging assumption of the 2D hydrodynamic model, and in the lacustrine zone possibly due to long-term decay of particulate organic matters induced during flood runoffs.

Arrangement of Disposal Holes According to the Features of Groundwater Flow (지하수 유동 특성을 이용한 심층처분의 처분공 배치 방안)

  • Ko, Nak-Youl;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • Based on the results of groundwater flow system modeling for a hypothetical deep geological repository site, quantitative and spatial distributions of groundwater flow rates at the positions of deposition holes, groundwater travel length and time from the positions to the surface environment were analyzed and used to suggest a method for determining locations of deposition holes. The hydraulic head values at the depth of the deposition holes and a particle tracking method were used to calculate the ground-water flow rates and groundwater travel length and time, respectively. From the results, an approach to designing a layout of deposition holes was suggested by selecting relatively favorable positions for maintaining performance of the disposal facility and screening some positions of deposition holes that did not comply with specific constraints for the groundwater flow rates, travel length and time. In addition, a method for determining a geometrical direction for extension of the disposal facility was discussed. Designing the layout of deposition holes with the information of groundwater flow at the disposal depth can contribute to secure performance and safety of the disposal facility.