• Title/Summary/Keyword: Site Validation

Search Result 266, Processing Time 0.025 seconds

Validation of the Korean Version of the Neck Dissection Impairment Index in Patients Who Underwent Neck Dissection (경부청소술을 시행한 환자를 대상으로 한 경부청소술 후 장애지수에 대한 한글화 버전 표준화)

  • Lim, Won Sub;Lee, Chang Wook;Lee, Yoon Se;Jo, Min-Woo;Jung, Young Ho;Choi, Seung-Ho;Kim, Sang Yoon;Nam, Soon Yuhl
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • Background/Objectives: Shoulder function is an important aspect of health related quality of life (QOL). Neck dissection impairment index (NDII) is a simple shoulder-specific questionnaire. This study aimed to evaluate the association between QOL and NDII in patients who underwent neck dissection to validate the Korean version of NDII. Materials & Methods: This study enrolled 74 patients with head and neck cancer who underwent neck dissection from December 2013 to April 2014. Patients completed questionnaires on QOL including the European Organization of Research and Treatment of Cancer 30-item Core QOL questionnaire (EORTC QLQ-C30) and NDII which was translated into Korean. Validity was evaluated by calculating the Pearson correlation coefficient between NDII and EORTC QLQ-C30. Results: We compared preoperative, postoperative within a week, 1st and 3rd months NDII scores. The total NDII scores were 14.7, 47.4, 33.7 and 34.3 each. Clinical variables including gender, site of primary tumor, performing revision neck dissection, radiotherapy and flap reconstruction were not significantly associated with NDII. However NDII mean score of patients who underwent unilateral neck dissection over 3 levels is most increased after operation. During all periods NDII scores were significantly associated with functioning score. Although other scores are lower correlation than function scores, global health status scores and symptom scores are also correlation with NDII. Conclusion: NDII was valid instrument and can be used not only in the clinical practice to assess shoulder dysfunction but also in the simple instrument to evaluate global QOL in Korea patients with having neck dissection.

A Study on the Real-time Recognition Methodology for IoT-based Traffic Accidents (IoT 기반 교통사고 실시간 인지방법론 연구)

  • Oh, Sung Hoon;Jeon, Young Jun;Kwon, Young Woo;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2022
  • In the past five years, the fatality rate of single-vehicle accidents has been 4.7 times higher than that of all accidents, so it is necessary to establish a system that can detect and respond to single-vehicle accidents immediately. The IoT(Internet of Thing)-based real-time traffic accident recognition system proposed in this study is as following. By attaching an IoT sensor which detects the impact and vehicle ingress to the guardrail, when an impact occurs to the guardrail, the image of the accident site is analyzed through artificial intelligence technology and transmitted to a rescue organization to perform quick rescue operations to damage minimization. An IoT sensor module that recognizes vehicles entering the monitoring area and detects the impact of a guardrail and an AI-based object detection module based on vehicle image data learning were implemented. In addition, a monitoring and operation module that imanages sensor information and image data in integrate was also implemented. For the validation of the system, it was confirmed that the target values were all met by measuring the shock detection transmission speed, the object detection accuracy of vehicles and people, and the sensor failure detection accuracy. In the future, we plan to apply it to actual roads to verify the validity using real data and to commercialize it. This system will contribute to improving road safety.

Experiment of KOMPSAT-3/3A Absolute Radiometric Calibration Coefficients Estimation Using FLARE Target (FLARE 타겟을 이용한 다목적위성3호/3A호의 절대복사 검보정 계수 산출)

  • Kyoungwook Jin;Dae-Soon Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1389-1399
    • /
    • 2023
  • KOMPSAT-3/3A (K3/K3A) absolute radiometric calibration study was conducted based on a Field Line of sight Automated Radiance Exposure (FLARE) system. FLARE is a system, which has been developed by Labsphere, Inc. adopted a SPecular Array Radiometric Calibration (SPARC) concept. The FLARE utilizes a specular mirror target resulting in a simplified radiometric calibration method by minimizing other sources of diffusive radiative energies. Several targeted measurements of K3/3A satellites over a FLARE site were acquired during a field campaign period (July 5-15, 2021). Due to bad weather situations, only two observations of K3 were identified as effective samples and they were employed for the study. Absolute radiometric calibration coefficients were computed using combined information from the FLARE and K3 satellite measurements. Comparison between the two FLARE measurements (taken on 7/7 and 7/13) showed very consistent results (less than 1% difference between them except the NIR channel). When additional data sets of K3/K3A taken on Aug 2021 were also analyzed and compared with gain coefficients from the metadata which are used by current K3/K3A, It showed a large discrepancy. It is assumed that more studies are needed to verify usefulness of the FLARE system for the K3/3A absolute radiometric calibration.

Insecticidal Effect of Moutan cortex radicis Extract for Control the Western Flower Thrips, Frankliniella occidentalis, on Greenhouse Pepper (시설 고추에 발생하는 꽃노랑총채벌레 방제를 위한 목단피 추출물의 살충효과)

  • Mi Hye Seo;Kyung Hye Seo;Kyung San Choi;Sun-Young Lee;Jung Beom Yoon;Jung-Joon Park
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In addition to causing direct feeding damage to a variety of greenhouse crops, Frankliniella occidentalis also inflicts indirect harm by facilitating the transmission of the tomato spotted wilt virus. Historically, the prevention of F. occidentalis infestations has relied heavily on pesticide use. However, this approach has led to significant side effects in agricultural ecosystems, including the development of pest resistance and challenges in effective prevention. In response to these issues, research has been directed towards identifying alternative substances that circumvent the tolerance developed against chemical pesticides. Extracts from sixty-seven medicinal plants were prepared by soaking them in water for 24 hours at room temperature. These extracts were then applied to adult F. occidentalis, with particular attention to moutan extract treatment. This treatment demonstrated a 100% insecticidal effect on the first day. The moutan extract, specifically, was prepared using 50% ethanol, after which the ethanol and water were removed via a rotary evaporator. The resultant product was then lyophilized into a powder and used after being diluted with water. In indoor experiments, a 40% diluted solution was sprayed onto F. occidentalis, exhibiting a 100% insecticidal effect 24 hours post-treatment. Furthermore, a pot test indicated a 78% insecticidal effect on the first day of application. Ongoing research includes the analysis of active substances that demonstrate exceptional insecticidal properties and the conduct of on-site validation tests. The application of the aforementioned extract is anticipated to be effective in the prevention of F. occidentalis infestations.

Study of the Derive of Core Habitats for Kirengeshoma koreana Nakai Using HSI and MaxEnt (HSI와 MaxEnt를 통한 나도승마 핵심서식지 발굴 연구)

  • Sun-Ryoung Kim;Rae-Ha Jang;Jae-Hwa Tho;Min-Han Kim;Seung-Woon Choi;Young-Jun Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.450-463
    • /
    • 2023
  • The objective of this study is to derive the core habitat of the Kirengeshoma koreana Nakai utilizing Habitat Suitability Index (HSI) and Maximum Entropy (MaxEnt) models. Expert-based models have been criticized for their subjective criteria, while statistical models face difficulties in on-site validation and integration of expert opinions. To address these limitations, both models were employed, and their outcomes were overlaid to derive the core habitat. Five variables were identified through a comprehensive literature review and spatial analysis based on appearance coordinates. The environmental variables encompass vegetation zone, forest type, crown density, annual precipitation, and effective soil depth. Through surveys involving six experts, importance rankings and SI (Suitability Index) scores were established for each variable, subsequently facilitating the creation of an HSI map. Using the same variables, the MaxEnt model was also executed, resulting in a corresponding map, which was merged to construct the definitive core habitat map. Out of 16 observed locations of K. koreana, 15 were situated within the identified core habitat. Furthermore, an area historically known to host K. koreana but not verified in the present, Mt. Yeongchwi, was found to lack a core habitat. These findings suggest that the developed models exhibit a high degree of accuracy and effectively reflect the current ecological landscape.

A study on smart inspection technologies and maintenance system for tunnel (터널 스마트 점검기술 및 유지관리 제도 분석에 관한 연구)

  • Jee-Hee Jung;Kang-Hyun Lee;Sangrae Lee;Bumsik Hwang;Nag-Young Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.569-582
    • /
    • 2023
  • In recent years, the service life of major SOC facilities in south korea has exceeded 30 years, and rapid aging is expected within the next 10 years. This has led to a growing recognition of the need for proactive maintenance of these facilities. Consequently, there have been numerous research efforts to introduce smart inspection technologies into maintenance. However, the current system relies primarily on manpower for safety inspections and diagnostics, and on-site surveys rely on visual inspections. Manpower inspections can be time-consuming, and subjective errors may occur during result analysis. In the case of tunnels, there are disadvantages, such as the loss of social overhead capital due to partial closures during inspections. Therefore, institutionalizing smart safety inspections is essential, considering specific measures like using advanced equipment and updating qualifications for experts. Furthermore, it is necessary to verify and validate safety inspection results using advanced equipment before instituting changes. This could be achieved through national-level official research programs and the operation of verification and validation institutions. If smart inspection technology is introduced into maintenance, routine inspections of SOC facilities, such as tunnels, will become feasible. As a result, maintenance technology capable of early detection and proactive response to safety incidents caused by changes in facility conditions is anticipated.

Recent Changes in Bloom Dates of Robinia pseudoacacia and Bloom Date Predictions Using a Process-Based Model in South Korea (최근 12년간 아까시나무 만개일의 변화와 과정기반모형을 활용한 지역별 만개일 예측)

  • Kim, Sukyung;Kim, Tae Kyung;Yoon, Sukhee;Jang, Keunchang;Lim, Hyemin;Lee, Wi Young;Won, Myoungsoo;Lim, Jong-Hwan;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.322-340
    • /
    • 2021
  • Due to climate change and its consequential spring temperature rise, flowering time of Robinia pseudoacacia has advanced and a simultaneous blooming phenomenon occurred in different regions in South Korea. These changes in flowering time became a major crisis in the domestic beekeeping industry and the demand for accurate prediction of flowering time for R. pseudoacacia is increasing. In this study, we developed and compared performance of four different models predicting flowering time of R. pseudoacacia for the entire country: a Single Model for the country (SM), Modified Single Model (MSM) using correction factors derived from SM, Group Model (GM) estimating parameters for each region, and Local Model (LM) estimating parameters for each site. To achieve this goal, the bloom date data observed at 26 points across the country for the past 12 years (2006-2017) and daily temperature data were used. As a result, bloom dates for the north central region, where spring temperature increase was more than two-fold higher than southern regions, have advanced and the differences compared with the southwest region decreased by 0.7098 days per year (p-value=0.0417). Model comparisons showed MSM and LM performed better than the other models, as shown by 24% and 15% lower RMSE than SM, respectively. Furthermore, validation with 16 additional sites for 4 years revealed co-krigging of LM showed better performance than expansion of MSM for the entire nation (RMSE: p-value=0.0118, Bias: p-value=0.0471). This study improved predictions of bloom dates for R. pseudoacacia and proposed methods for reliable expansion to the entire nation.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: I. Correction for Local Temperature under the Inversion Condition (기상청 동네예보의 영농활용도 증진을 위한 방안: I. 기온역전조건의 국지기온 보정)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.76-84
    • /
    • 2013
  • An adequate downscaling of the official forecasts of Korea Meteorological Administration (KMA) is a prerequisite to improving the value and utility of agrometeorological information in rural areas, where complex terrain and small farms constitute major features of the landscape. In this study, we suggest a simple correction scheme for scaling down the KMA temperature forecasts from mesoscale (5 km by 5 km) to the local scale (30 m by 30 m) across a rural catchment, especially under temperature inversion conditions. The study area is a rural catchment of $50km^2$ area with complex terrain and located on a southern slope of Mountain Jiri National Park. Temperature forecasts for 0600 LST on 62 days with temperature inversion were selected from the fall 2011-spring 2012 KMA data archive. A geospatial correction scheme which can simulate both cold air drainage and the so-called 'thermal belt' was used to derive the site-specific temperature deviation across the study area at a 30 m by 30 m resolution from the original 5 km by 5 km forecast grids. The observed temperature data at 12 validation sites within the study area showed a substantial reduction in forecast error: from ${\pm}2^{\circ}C$ to ${\pm}1^{\circ}C$ in the mean error range and from $1.9^{\circ}C$ to $1.6^{\circ}C$ in the root mean square error. Improvement was most remarkable at low lying locations showing frequent cold pooling events. Temperature prediction error was less than $2^{\circ}C$ for more than 80% of the observed inversion cases and less than $1^{\circ}C$ for half of the cases. Temperature forecasts corrected by this scheme may accelerate implementation of the freeze and frost early warning service for major fruits growing regions in Korea.

Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model (RCP 시나리오 및 전지구 수문 모형을 활용한 아시아 미래 수문인자 예측)

  • Kim, Dawun;Kim, Daeun;Kang, Seok-koo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.551-563
    • /
    • 2016
  • According to the 4th and 5th assessment of the Intergovernmental Panel on Climate Change (IPCC), global climate has been rapidly changing because of the human activities since Industrial Revolution. The perceived changes were appeared strongly in temperature and concentration of carbon dioxide ($CO_2$). Global average temperature has increased about $0.74^{\circ}C$ over last 100 years (IPCC, 2007) and concentration of $CO_2$ is unprecedented in at least the last 800,000 years (IPCC, 2014). These phenomena influence precipitation, evapotranspiration and soil moisture which have an important role in hydrology, and that is the reason why there is a necessity to study climate change. In this study, Asia region was selected to simulate primary energy index from 1951 to 2100. To predict future climate change effect, Common Land Model (CLM) which is used for various fields across the world was employed. The forcing data was Representative Concentration Pathway (RCP) data which is the newest greenhouse gas emission scenario published in IPCC 5th assessment. Validation of net radiation ($R_n$), sensible heat flux (H), latent heat flux (LE) for historical period was performed with 5 flux tower site-data in the region of AsiaFlux and the monthly trends of simulation results were almost equaled to observation data. The simulation results for 2006-2100 showed almost stable net radiation, slightly decreasing sensible heat flux and quite increasing latent heat flux. Especially the uptrend for RCP 8.5 has been about doubled compared to RCP 4.5 and since late 2060s, variations of net radiation and sensible heat flux would be significantly risen becoming an extreme climate condition. In a follow-up study, a simulation for energy index and hydrological index under the detailed condition will be conducted with various scenario established from this study.