• 제목/요약/키워드: Sirtuin6

검색결과 25건 처리시간 0.018초

총백추출물의 고지방식이 유도 비만 마우스에서의 항비만 효과 및 근육조직에서의 에너지대사 조절기전 연구 (Anti-Obesity Effects and the Regulation of Energy Metabolism in Skeletal Muscle Tissues of Allii Fistulosi Bulbus Extract in High Fat Diet-Induced Obesity Mice)

  • 최윤용;이현수;백수연;임수민;정효원;강석용;박용기
    • 한방비만학회지
    • /
    • 제22권2호
    • /
    • pp.102-114
    • /
    • 2022
  • Objectives: We investigated the effects of Allii Fistulosi Bulbus (AFB) on high fat diet (HFD)-induced obesity in mice and the regulation of energy metabolism in muscle tissues of mice. Methods: The C57BL/6 mice (6 weeks, male) were fed a HFD for 8 weeks and then administrated with AFB extract at 500 mg/kg (p.o.) once daily for 4 weeks. The body weight (BW), muscle weight, calorie intake, fasting blood glucose (FBG) and serum glucose, insulin, and low-density lipoprotein-cholesterol (LDL-C) levels were measured in mice. It was also observed the histological changes of pancreas, liver, and fat tissues with hematoxylin and eosin staining. It was investigated the phosphorylation of insulin receptor substrate 1 (IRS-1), Ser/Thr kinase (AKT), and adenosine monophosphate-activated protein kinase (AMPK), and the expression of phosphoinositide 3-kinase, glucose transporter type 4 (GLUT4), and sirtuin1 (Sirt1) in gastrocnemius tissues by western blot, respectively. Results: The increases of BWs, calorie intakes and FBG levels in obesity mice were decreased significantly by the administration of AFB extract. The AFB extract administration was reduced significantly serum levels of glucose, insulin, and LDL-C in obesity mice. The AFB extract inhibited lipid accumulation in liver tissues, hyperplasia of pancreatic islets, and enlargement of fat tissues in obesity mice. The phosphorylation of IRS-1 and AKT was increased significantly in muscle tissues and AMPK phosphorylation and the GLUT4 and Sirt1 expression were decreased significantly in muscle tissues after the AFB administration. Conclusions: Our study indicates that AFB extract improves symptoms of obesity through regulation of energy regulating proteins in muscle tissues.

AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과 (Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway)

  • 이세희;박해진;신미래;노성수
    • 대한본초학회지
    • /
    • 제37권2호
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

당귀작약산의 창상 회복에 대한 효과 (The Effect of Dangguijakyak-san on Wound Healing)

  • 이윤진;우창훈;김영준;김현지;안희덕
    • 한방재활의학과학회지
    • /
    • 제33권3호
    • /
    • pp.47-65
    • /
    • 2023
  • Objectives We evaluated the wound healing effects of Dangguijakyak-san (DJ) using C57BL/6 mice that were generated open wound. Methods The study was conducted with seven C57BL/6 mice assigned to each group, divided into the normal group, control group, vitamin E group, DJ low-dose group, DJ high-dose group. We measured total polyphenol, flavonoid contents, the size of the wound, liver function, pro-inflammatory cytokine activity in serum, inflammation-related proteins, adhesion molecules and chemokine proteins, collagen-related proteins in skin tissue and histopathological changes by H&E and Masson's staining. Results DJ treatment significantly reduced the area of the wound compared to the control group. Also, inflammatory cytokines were reduced and the expression of anti-inflammatory-related factors (interleukin-4 [IL-4] and IL-10) was significantly increased in the DJ treatment group. We identified that DJ treatment inhibits both pathways of inflammation, the mitogen-activated protein kinases and nuclear factor-κB pathway. Moreover, the protein expressions of Sirt1 (sirtuin 1), MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1) were decreased by DJ administration. Also, the expression of α-smooth muscle actin and collagen type I alpha 1, collagen-related proteins, that help skin recovery was significantly increased in the DJ treatment group. Histopathologically, a relatively thin epithelial layer could be observed in the DJ administration group, as well as an increase in fibroblasts and collagen fibers. Conclusions These data suggest that DJ treatment is effective in wound healing, suppressing inflammatory proteins, increasing skin repair factors and improving histopathological changes caused by wounds.

고지방식이로 유도한 비만 쥐에서 레스베라트롤이 자가포식에 미치는 영향 (Effects of resveratrol on hepatic autophagy in high fat diet-induced obese mice)

  • 이희재;양수진
    • Journal of Nutrition and Health
    • /
    • 제46권4호
    • /
    • pp.307-314
    • /
    • 2013
  • 본 연구에서는 레스베라트롤이 당뇨병 및 비알코올성 지방간 질환 개선 효과를 가지는지를 규명하기 위해 고지방 식이 유도 비만 쥐를 대상으로 레스베라트롤을 4주간 osmotic pump를 사용하여 공급한 후 정상대조군과 고지방식이 제공 비만군과 비교 분석하였고 그 결과는 다음과 같다. 1) 고지방식이 유도 비만 쥐를 대상으로 8 mg/kg/day의 레스베라트롤을 4주간 처리한 결과 체중 변화, 간 조직 중량, 식이 섭취량에 영향을 미치지 않았다. 2) 레스베라트롤은 공복 혈당, 혈청 내 인슐린, 중성지방, 총 콜레스테롤 농도를 낮추었고, 인슐린 작용을 촉진시키는 혈청 아디포넥틴 수준을 개선시켰다. 또한, 고지방식이에 의해 높아진 간 조직 내 중성지방과 총콜레스테롤 농도를 낮추어 레스베라트롤이 지방간 개선 효과를 가질 수 있음을 제안하였다. 3) 자가포식의 표지인자인 autophagosome 생성과 LC3-II 형성 분석 결과, 고지방식이에 의해 과도한 자가포식이 유도되었음을 확인하였다. 레스베라트롤 처리는 이중막을 가지는 autophagosome 생성과 LC3-II 형성을 감소시켜 고지방식이에 의해 유도된 과도한 자가포식을 억제시킴을 보여주었다. 결론적으로 고지방식이와 함께 레스베라트롤을 제공하는 것은 당뇨병과 비알코올성 지방간 질환 관련 대사 인자들을 개선시키고, 이는 간에서의 자가포식 조절과 관련이 있다고 제안한다.

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.