• Title/Summary/Keyword: Sinusoidal output

Search Result 346, Processing Time 0.048 seconds

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters (디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

A Method for Estimating an Instantaneous Phasor Based on a Modified Notch Filter

  • Nam Soon-Ryul;Sohn Jin-Man;Kang Sang-Hee;Park Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • A method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection that is immune to a DC-offset. The method uses a modified notch filter in order to eliminate the power frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed trom the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a-phase to ground faults on a 345kV 100km overhead transmission line. The Electromagnetic Transient Program was utilized to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy.

Efficient Switching Pattern to Decrease Switching Losses in Cascaded H-bridge PWM Multilevel Inverter (Cascaded H-bridge PWM 멀티레벨인버터의 스위칭 손실 저감을 위한 효율적인 스위칭 패턴)

  • Jeong, Bo Chang;Kim, Sun-Pil;Kim, Kwang Soo;Park, Sung-Jun;Kang, Feel-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.502-509
    • /
    • 2013
  • It presents an efficient switching pattern, which expects a reduction of switching losses in a cascaded H-bridge PWM multilevel inverter. By the proposed switching scheme, the lower H-bridge module operates at low frequency of 60[Hz] because it assigns to transfer most load power. The upper H-bridge module operates at high frequency of PWM switching to improve THD of output voltage. The proposed switching pattern applies to cascaded H-bridge multilevel inverter with PD, APOD, bipolar, and unipolar switching methods. By computer-aided simulations, we verify the validity of the proposed switching scheme. Finally, we prove that the proposed PD and APOD switching patterns are better than those of the conventional one in efficiency.

Improvement of Group Delay and Reduction of Computational Complexity in Linear Phase IIR Filters

  • Varasumanta, Saranuwaj;Sookcharoenphol, Dolchai;Sriteraviroj, Uthai;Janjitrapongvej, Kanok;Kanna, Channarong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.955-959
    • /
    • 2003
  • A technique for realizing linear phase IIR filters has been proposed by Powell-Chau which gives a real-time implementation of H(z-1).H(z), where H(z) is a causal nonlinear phase IIR filter. Powell-Chau system is linear but not timeinvariant system. Therefore, that system has group delay response that exhibits a minor sinusoidal variation superimposed on a constant value. In the signal processing, this oscillation seriously degrade the signal quality. Unfortunately, that system has a large sample delay of 4L and also more computational complexity. Proposed system is present a reduced computational complexity technique by moved the numerator polynomial of H(1/z) out to cascade with causal filter H(z) and remain only all-pole of H(1/z), then applied truncated infinite impulse response to finite with truncated IIR filtel $H_L$(z) and L sample delay to subtract the output sequence from the top and bottom filter. Proposed system is linear time invariance and group delay response and total harmonic distortion are also improved.

  • PDF

MRSF-PWM Method for Acoustic Noise Reduction of Traction Motor Drive Systems (견인전동기 구동시스템의 소음 저감을 위한 MRSF-PWM 방식)

  • 홍순찬;서영민
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.262-271
    • /
    • 2002
  • In PWM inverters used in traction motor drive systems, the switching frequency is restricted by their large power capacity and thus the electromagnetic acoustic noise is generated. To reduce such an audible noise, the new MRSF-PWM(Modified Random Switching Frequency PWM) method is proposed. In the Proposed MRSF-PWM method, both triangular wave and sawtooth wave are used together as carrier waves for harmonic diffusion and reference wave is generated by injecting 3rd harmonic into the stone wave to expand the linear control region of output voltages. To verify the validity of the proposed MRSF-PWM method, computer simulations are carried out. And the results show that the MRSF-PWM method is more excellent than other RPWM methods in the aspects of both linearity and harmonic diffusion md more effective than SPWM(Sinusoidal PWM) method for the reduction of an audible noise.

Characteristics of Piezoelectric Microspeakers according to the Material Properties (물성변화에 따른 압전형 마이크로스피커의 특성)

  • Jeong, Kyong-Shik;Cho, Hee-Chan;Yi, Seung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.556-561
    • /
    • 2008
  • This paper reports the characteristics of piezoelectric microspeakers that are audible in open air with high quality piezoelectric AlN thin film according to the materials properties. When we use a tensile-stressed silicon nitride diaphragm as a supporting layer, the Sound Pressure Level (SPL) is relatively small and constant at low frequency region and shows about 70 dB at 10 kHz. However, in case of a compressively stressed composite diaphragm, the SPL of the fabricated microspeakers shows higher output pressure than those of a tensile-stressed diaphragm. It produces more than 66 dB from 100 Hz to 15 kHz and the highest SPL is about 100 dB at 9.3 kHz with $20V_{peak-to-peak}$, sinusoidal input biases and at 10 mm distances from the fabricated microspeakers to the reference microphone. From the experimental results, it is superior to have a compressively composite diaphragm in order to produce a high SPL in piezoelectric microspeaker.

Improvement of Output Characteristics and Acoustic Noise Characteristics for Single Phase Induction Motor with Concentrated Winding (집중권 방식 단상유도기의 출력 및 소음 특성 개선)

  • Chae, Myong-Gi;Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.693-698
    • /
    • 2007
  • In general the distributed winding method is applied for induction motor in order to have the sinusoidal flux distribution. Recently the concentrated winding method is the interested technique so as to lower the material cost portion of copper coil. In the concentrated winding induction motor the harmonic flux and the torque deterioration by it would be occurred. To restrain ill effect of harmonic flux distribution by concentrated winding, the skew of rotor conduction bar is very important design variable. This study is focused on the optimal design of rotor bar's skew and winding turns for concentrated winding induction motor. In this study, the control method of harmonic parasitic torque in concentrated winding induction motor is proposed and validated its practicality through the experiment. As a result of this study, large skew angle which was not conventional in distributed winding was favorable in the concentrated winding induction motor. The concentrated winding induction motor which is designed per the proposed method of this study can be manufactured more cost effectively than conventional distributed winding.

A Methodology of Finding the Direction of Lightning Discharge using Loop-type Magnetic Field Sensors (루프형 자계센서를 이용하여 뇌방전이 발생한 방향을 탐지하는 기법)

  • Lee, Bok-Hee;Cho, Chi-Youn;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.63-68
    • /
    • 2014
  • This paper deals with a methodology that applies the time-varying magnetic fields produced by the cloud discharges to find the direction of thunderstorm movement. We investigated the basic performance of the magnetic field measurement system composed of multi-turn loop-type sensors, the differential amplifier and active integrator. As a result, the response characteristics of the magnetic field sensor system to sinusoidal signals was excellent. The frequency bandwidth ranges from about 1 kHz to 500 kHz, the response sensitivity was 0.16mV/nT. In addition, we proposed the algorithm that determines the direction of lightning discharges using the comparison of the output signals of right-angled loop-type magnetic field sensors. The accuracy of the direction finding of lightning discharges is fairly well within the measurement error of less than $5^{\circ}$. The magnetic field measurement system proposed in this work can be used to track the direction of thunderstorm movement.