• Title/Summary/Keyword: Sintering rate

Search Result 388, Processing Time 0.023 seconds

Synthesis of Cu Sintering Paste Using Growth of Nanofiber on Cu Microparticles Mixed with Formic Acid (포름산 혼합 나노섬유 성장 구리마이크로입자를 이용한 구리 소결 페이스트 합성)

  • Young Un Jeon;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.96-99
    • /
    • 2024
  • A sintering paste for bonding copper plates was synthesized using Cu formate nanofibers on Cu microparticles, mixed with formic acid. Copper oxide nanofibers of 10 ㎛ grown at 400 ℃ on Cu microparticles on the surface were transformed into copper formate nanofibers through the mixing of formic acid. Compared to Cu bulk particles or nanoparticles, Cu formate on Cu microparticles decomposed into metallic Cu at a lower temperature of 210 ℃, facilitating the sintering of copper paste. The growth of nanofiber on Cu microparticles allowed for an increase in the reaction rate of formation to copper formate, aggregating surface area, and decomposition rate of copper formate, resulting in fast sintering.

Development and Sintering test of Industrial SFF system using SLS process (SLS 공정을 이용한 산업용 SFF 시스템의 개발 및 소결실험)

  • Jo, Hong-Seok;Cho, Hyun-Taek;Baek, Yung-Jong;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1389-1393
    • /
    • 2007
  • Selective Laser Sintering (SLS) is currently recognized as a leading process in the new field of solid freeform fabrication (SFF). It is used to fabricate in a short time any 3 dimensional shapes by layer-by-layer sintering of polymer, ceramic or metal powder. To develop this SFF system, it needs effective laser scanning path, temperature and z-axis control for lamination. Therefore, in this study, through the application of control algorithm for sintering process have performed, temperature evaluation for sintering process has performed and the manufacturing sample using SLS process.

  • PDF

Effect of Screen Printing and Sintering Conditions on Properties of Thick Film Resistor on AlN Substrate (인쇄 및 소결조건이 AlN 기판용 후막저항체의 특성에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.344-349
    • /
    • 2014
  • $RuO_2$-based high frequency thick-film resistor paste was printed at the speed of 10, 100, 300 mm/sec on the AlN substrate, and then sintered at between 750 and $900^{\circ}C$. The sintered thick films were characterized in terms of printing and sintering conditions. With increasing printing speed, the thickness and roughness of sintered film increased. The resistance of the thick film resistor was reduced by increasing the printing speed from 10 to 100 mm/sec, but did not significantly change at 300 mm/sec speed. With increasing sintering temperature, the surface roughness and thickness of sintered resistor film decreased. The reduction rate was large in case of fast printed resistor. The resistance of the resistor increased up to $800^{\circ}C$ with sintering temperature, but again decreased at the higher sintering temperature.

The Effect of Ball Milling and Sintering Temperatures on the Sintering Behaviors and Mechanical Properties of $Al_2O_3/SiC$ Nanocomposites ($Al_2O_3/SiC$ 나노복합체의 상압소결 및 역학적 특성에 미치는 볼밀분쇄와 소결온도의 영향)

  • 류정호;나석호;이재형;조성재
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.668-676
    • /
    • 1997
  • Al2O3/SiC nanocomposites are fabricated through intensive ball milling to mix fine SiC particles uniformly with the Al2O3 powder. Another role of milling is to reduce particle sizes by crushing particles as well as agglomerates. However, balls are worn during ball milling and the sample powder mixtures pick up to weight loss of the balls. In this study, pressureless sintering was performed to obtain Al2O3/SiC nanocomposites. It was found that the wear rate of zirconia balls during milling was considerable, and the zirconia addition after even a few hours of ball milling could increase the sintering rates of the nanocomposites significantly. Thus, addition of ZrO2 changed the sintering behaviors as well as mechanical properties of Al2O3/SiC nanocomposites.

  • PDF

Study on the sintering Behavior of Mechanecally Alloyed 75W-25Cu Powder Using a Dilatometry Technique

  • Lee, Seong-;Hong, Moon-Hee;Kim, Eun-Pyo-;Houng-Sub;Noh, Joon-Woong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05b
    • /
    • pp.126-126
    • /
    • 1992
  • Solid and liquid sintering behaviors of mechanically alloyed 75W-25Cu powders have been studied by using a dilatometry technique. The sintering was performed under hydrogen atmosphere of 1 atm with a heating rate of 3 $^{\circ}C$/min. The mechanically alloyed 75W-25Cu powders were prepared by high energy ball milling process under argon atmosphere of 1 atm with alloying times of 0 to 400 h. To compare with the sintering behaviors of mechanically alloyed powders, pure Cu and W powders were also sintered under the above conditions, As the mechanical alloying time increased from 0 to 400 h, the shrinkage behavior of the alloyed powders was enhanced during the sintering, and staring temperature of liquid sintering decreased from 1083 to 1068 $^{\circ}C$. The saturation temperature, above which the shrinkage was completed, of liquid phase sintering decreased from 1248 to 1148 $^{\circ}C$ with increasing mechanical alloying time from 200 to 400 h. The residual stress of the mechanically alloyed powder was measured by X-raydiffractometer. The microstructure of sintered spcimen was observed by optical and scanning electron microscope. From these results, variations of solid and liquid sintering behaviors with mechanical alloying time were discussed in terms of the amount of residual stress and the distribution of W and Cu powders in the mechanically alloyed powder.

  • PDF

Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property (W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성)

  • Oh, Gyu-Sang;Lee, Sung-Min;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.293-299
    • /
    • 2020
  • W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 ㎛ and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.

Determination of Surface Diffusivities of Oxides by the Combined Sintering (소결에 의한 산화물촉매의 표면확산계수의 측정)

  • 문세기;유경옥;김형진
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.2
    • /
    • pp.73-77
    • /
    • 1977
  • The surface diffusion coefficients for nickel, nickel oxide, cuppric oxide, cobalt oxide, alumina and ferric oxide have been determined at various temperatures using the sintering technique. This investigation is based on the model accounting for the sum of the contribution of volume and surface diffusion to the overall shrinkage rate during the initial stage of sintering. Simultaneous measurements of shrinkages and shrinkage rates of the materials compacts were conducted for various annealing times, the results of which were then correlated to the diffusion coefficient.

  • PDF

Properties of Potashborosilicate Glass-ceramic Substrate by adding Al2O3 (Al2O3 첨가에 따른 potashborosilicate glass ceramic 기판의 특성변화에 관한연구)

  • 김용철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Sintering and dielectric characteristics of substrates were estimated by mixing rate of alumina and potashborosilicate glass(PBSG) powders. PBSG powders were used 7761(corning code)and alumina powders were used in extra pure rate(99.9%) and had 0.1 ${\mu}$m mean size. After ball milling with organic additives green sheets which were casted by doctor blade machine were sintered at 800$^{\circ}C$ for 1∼3hrs. Microstructure, linear shrinkage and dielectric constant of substrates were surveyed in order to fabricate low-dielectric and low tem-perature sintering substrate.

Effect of heating Rate on the Microstructural Evolution during Sintering of PZT Ceramics (PZT 요업체의 소결과정 중 승온속도가 미세조직에 미치는 영향)

  • 박은태;김정주;조상희;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1020-1026
    • /
    • 1990
  • The effect of heating rate on the microstructural evolution during sintering of PZT ceramics has been investigated. In case of PZT powder compacts containing excess of PbO, fast heating caused incomplete rearrangement of solid grains in a liquid, resulting in lower density and inhomogeneous pore shape ; on contrary, slow heating resulted in better densification. In contrast, in case of compacts without excess PbO, the densification was enhanced by fast heating due to suppression of the grain growth.

  • PDF

Effects of Sintering Additives and Atmospheres on the Piezoelectric and Sintering Properties of $Pb_{0.98}Cd_{0.02}Zr_{0.36}Ti_{0.39}Ni_{0.083}Nb_{0.167}O_3$ (소결첨가제와 분위기가 $Pb_{0.98}Cd_{0.02}Zr_{0.36}Ti_{0.39}Ni_{0.083}Nb_{0.167}O_3$의 소결 및 압전 특성에 미치는 영향)

  • 문종하;박진성;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1260-1266
    • /
    • 1996
  • The effects of SiO2 MnO2 and sintering atmospheres (O2, N2) on the piezoelectric properties and densification behaviors of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 were investigated. The addition of SiO2 to the system enhanced the rate of densification but supressed the rate of grain growth. On the other hand the addition of MnO2 to the system did not nearly affect the rate of densification but increased slightly the rate of grain growth The densification of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 was promoted with increasing the partial pressure of O2. The relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 sintered under O2 atmosphere were higher than under N2 atmosphere. Whereas the mechanical quality factor (Qm) of specimens sintered under O2 atmosphere were lower than under N2 atmosphere. Thus the sintering atmosphere of O2 and N2 in Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 acted as donor and acceptor respectively. As the amount of SiO2 increased the relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 but the mechanical quality factor (Qm) did not nearly change, In the case of the addition of MnO2 to the system the relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 sintered under O2 atmosphere decreased rapidly with increasing the amount of MnO2 but they were unchanged with increasing the amount of MnO2 under N2 sintering atmosphere. Therefore the differences of the relative dielect-ric constant ($\varepsilon$r) and piezoelectric constant (d33) due to sintering atmosphere were diminished as the amount of MnO2 increased.

  • PDF