• Title/Summary/Keyword: Sintering process condition

Search Result 118, Processing Time 0.116 seconds

Cu Electrode Fabrication by Acid-assisted Laser Processing of Cu Nanoparticles and Application with Transparent·Flexible Electrode (구리 나노 입자에 산-보조 레이저 공정을 적용한 구리 전극 제작 공정 개발 및 투명·유연 전극으로 활용)

  • Jo, Hyeon-Min;Gwon, Jin-Hyeong;Ha, In-Ho;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.121-121
    • /
    • 2018
  • Copper is a promising electronic material due to low cost and high electrical conductivity. However, the oxidation problem in an ambient condition makes a crucial issue in practical applications. In here, we developed a simple and cost-effective Cu patterning method on a flexible PET film by combining a solution processable Cu nanoparticle patterning and a low temperature post-processing using acetic acid treatment, laser sintering process and acid-assisted laser sintering process. Acid-assisted laser sintering processed Cu electrode showed superior characteristics in electrical, mechanical and chemical stability over other post-processing methods. Finally, the Cu electrode was applied to the flexible electronics applications such as flexible and transparent heaters and touch screen panels.

  • PDF

Influence of Laminating and Sintering Condition on Permittivity and Shrinkage During LTCC Process (LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향)

  • Jeong, M.S.;Hwang, S.H.;Chung, H.W.;Rhim, S.H.;Oh, S.I.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.396-400
    • /
    • 2007
  • LTCC(Low Temperature Co-fired Ceramic) which offers a good performance to produce multilayer structures with electronic circuits and components has emerged as an attractive technology in the electronic packaging industry. In LTCC module fabrication process, the lamination and the sintering are very important processes and affect the electrical characteristics of the final products because the processes change the permittivity of ceramics and the dimension of the circuit patterns which have influences on electronic properties. This paper discusses the influence of lamination pressure and sintering temperature on the permittivity and the dimensional change of LTCC products. In the present investigation, it is shown that the permittivity increases along with increasing of the lamination pressure and the sintering temperature.

Fabrication of Ceramic Dental Block by Magnetic Pulsed Compaction (자기펄스압축성형장치를 이용한 대면적 지르코니아 덴탈블록 제조 연구)

  • Park, Hyo-Young;Kim, Hyo-Seob;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.373-378
    • /
    • 2012
  • Sintered bulks of $ZrO_2$ nanopowders were fabricated by magnetic pulsed compaction (MPC) and subsequent two-step sintering employed in this study and the formability effects of nanopowder on mixing condition, pressure and sintering temperature were investigated. The addition of PVA induced and increase in the formability of the sintered bulk. But cracked bulks were obtained on sintering with addition of over 10 wt% PVA due to generation of crack during sintering. The optimum compaction pressure during MPC was 1.0 GPa and mixing conditions included using 5.0 wt% PVA. The optimum processing condition included MPC process, followed by two-step sintering (first at 1000 and then at $1450^{\circ}C$). The sintered bulks with the diameter of 30 mm under these conditions were found to have non crack, ~99% density.

An Experimental Study for Drawing of Optimal Process Condition in the SLS Process (SLS 공정에서 최적 공정 조건 도출을 위한 실험적 연구)

  • Bae, Sung-Woo;Yoo, Seong-Yeon;Kim, Dong-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.516-524
    • /
    • 2012
  • Selective Laser Sintering(SLS) system consists of various element technologies. Main components of the system include a position control system, a speed control system of the roller, and nitrogen atmosphere furtherance for the powdered sintering. Other systems which make the core of the SLS system are build room and the feed room for powder epitaxial, a temperature control system, and a scan path generator for the laser. The powder material for laser sintering is necessary to produce prototypes in Solid Freeform Fabrication(SFF) based on SLS process. This powder material is sintered in powder room using $CO_2$ laser after spreading evenly using roller to reproduce mold via SFF. This study addresses an SFF system by using the SLS process which applies single laser system to enable manufacturing of 3D shape. And to evaluate applicability of the single laser system, experiments were conducted with optimal fabricating process.

Application of rate-controlled sintering into the study of sintering behavior of boron carbide (탄화붕소 소결 거동 연구를 위한 율속제어소결의 적용)

  • Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • Under rate-controlled sintering, furnace power is controlled to maintain a specific specimen contraction rate. This thermal processing method guarantees continuous process with a minimum thermal energy applied over time and makes it possible to control the density of the sintered body precisely. In this study, the rate-controlled sintering is applied to the sintering of $B_4C$ in order to investigate how rate-controlled sintering variables can affect the sintering behavior and/or grain growth behavior of $B_4C$ and how the results can be interpreted using sintering theories to draw an optimal sintering condition of the rate-controlled sintering. Further, the applicability of the rate-controlled sintering into the study for sintering of unknown materials is also considered.

Experimental Research of Powder Forging for Sub-Scale Connecting rods (커넥팅 로드의 분말단조를 위한 소결 및 단조특성의 실험적 연구)

  • 이동원;이정환;정형식;이영선;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.149-158
    • /
    • 1994
  • Powder forged Connecting Rods have become attractive for use in automotive engines. The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C, optimum preform design and forgeability of various forging variables were investigated. Our data were generated using a newly proposed sub-scale con-rod developed specifically to simulate the powder forging process. We obtain optimum condition of sintering and powder forging process.

  • PDF

Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure (초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구)

  • Song, Jeongho;Eom, Junghye;Noh, Yunyoung;Kim, Young-Wook;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.226-230
    • /
    • 2013
  • We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

Consolidation Behavior of Ti-6Al-4V Powder by Spark Plasma Sintering (Spark plasma sintering에 의한 Ti-6Al-4V 합금분말의 성형성)

  • Kim, J.H.;Lee, J.K.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.32-37
    • /
    • 2007
  • Using spark plasma sintering process (SPS), Ti-6Al-4V alloy powders were successfully consolidated without any contamination happened due to reaction between the alloy powders and graphite mold. Variation of microstructure and mechanical properties were investigated as a function of SPS temperature and time. Compared with hot isostatic pressing (HIP), the sintering time and temperature could be lowered to be 10 min. and $900^{\circ}C$, respectively. At the SPS condition, UTS and elongation were about 890 MPa and 24%, respectively. Considering the density of 98.5% and elongation of 24%, further improving the tensile strength would obtain by increasing the SPS pressure.

Thermal Shock and Hot Corrosion Resistance of Si3N4 Fabricated by Nitrided Pressureless Sintering (질화상압(NPS)법으로 제조한 질화규소의 열충격 저항성 및 내부식성 특성평가)

  • Kwak, Kil-Ho;Kim, Chul;Han, In-Sub;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.478-483
    • /
    • 2009
  • Thermal shock and hot corrosion resistance of silicon nitride ceramics are investigated in this study. Silicon nitrides are fabricated by nitride pressureless sintering (NPS) process, which process is the continuous process of nitridation reaction of Si metal combined with subsequent pressureless sintering. The results of thermal shock test show it sustains 400MPa of initial strength during test in the designated condition of ${\Delta}T=700{\sim}25^{\circ}C$ up to maximum 4,800 cycles. Hot corrosion tests also reveal that the strength degradation of NPS silicon nitride did not occur at $700^{\circ}C$ with an exposure in Ar, $H_2$, Na and K for 1,275 h.

Processing and properties of $Al_{2}O_{3}/SiC$ nanocomposites by polycarbosilane infiltration

  • Jung-Soo Ha;Chang-Sung Lim;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • $Al_{2}O_{3}/SiC$ nanocomposites were made by infiltrating partially sintered alumina bodies with polycarbosilane (PCS) solutions, which is a SiC polymer precursor, with pressureless sintering. The SiC content, densification, phases, strength, and microstructure were investigated with the processing parameters such as PCS solution concentration and heat treatment condition for PCS pyrolysis and sintering. The results were compared with those for pure alumina and nanocomposite samples made by the existing polymer precursor route (i.e. the PCS addition process). The SiC contents of up to 1.5 vol% were obtained by the PCS infiltration. PCS pyrolysis, followed by air heat treatment, was needed before sintering to avoid a cracking problem and to attain a densification as high as 98 % of theoretical. The nanocomposites exhibited significantly higher strength than pure alumina and those prepared by the PCS addition process despite larger grain size. Besides $\alpha-Al_{2}O_{3}/SiC$ and $\beta-SiC$ phases, mullite was present a little in the nanocomposites, which resulted from the reaction of $SiO_{2}$ in the pyrolysis product of PCS with the $Al_{2}O_{3}$ matrix during sintering. The nanocomposites had intagranular particles believed to be SiC, which is a typical feature of $Al_{2}O_{3}/SiC$ nanocomposites.