• Title/Summary/Keyword: Sintering process

Search Result 1,443, Processing Time 0.029 seconds

Wear Resistance of Al Alloy Matrix Composites Using Porous Iron Aluminide-$SiC_p$ Preforms (Iron Aluminide-$SiC_p$ 혼합 예비성형체를 사용한 Al합금기 복합재료의 내마모 특성)

  • Cha, Jae-Sang;Oh, Sun-Hoon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.30-39
    • /
    • 2003
  • Porous hybrid preforms were fabricated by reactive sintering using the compacts consisting of SiC particles, Fe and Al powders. Squeeze casting processing was employed to produce the composite in which the matrix phase is Al-Si7Mg. The microstructural change and wear resistance of the composites were investigated in terms of an amount of SiC particles. The wear loss was increased with increasing the contact pressure in the alloy containing SiC particles coated with Cu. The most drastic change was found to the specimen tested at 2.5 MPa of contact pressure. Concerning the alloys containing SiC particles coated with Ni-P, a drastic increase in the wear loss exhibited at 2 MPa of contact pressure in those alloys containing 4 and 8 wt. % of SiC particles coated with Ni-P. In the alloy containing 16 wt. % a proportional increase in wear loss was observed to the change of contact pressure. With respecting to the sliding velocity, the wear loss of the alloy containing SiC particles coated with Cu increased at the initial stage of wear process and then decreased. Similar result was found in the alloys containing SiC particles coated with Ni-P. On the basis of the present results obtained, it was found that wear resistance of the alloys tested was improved to show in the order of the alloy reinforced by coated SiC particles > by uncoated SiC particles > by intermetallic compound without SiC particles.

Fabrication and Characterization of BixCel-xO2-x/2 Electrolytes for IT-SOFC (중온형 고체산화물 연료전지BixCel-xO2-x/2 전해질의 제조 및 특성평가)

  • Han, Ju-Hyeng;Lee, In-Sung;Lee, Dokyol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.808-815
    • /
    • 2005
  • [ $Bi_xCe_{l-x}O_{2-x/2}$ ](BD C : Bismuth Doped Ceria) powders with x = 0.1, 0.2, and 0.3 were synthesized using the Glycine Nitrate Process (GNP). They were then calcined at $500^{\circ}C$ for 2 hand sintered in a pellet or rod form at 900, 1000 or $1100^{\circ}C$ for 4 h for characterization as the alternative electrolyte material for intermediate temperature solid oxide fuel cells. The BDC powder consisted of a single phase of $CeO_2-Bi_2O_3$ solid solution in the as-synthesized state as well as in the as-calcined state with a mean powder size of 4.5nm in the former state and 6.5 - 10.1nm in the latter. On the contrary, the second phase of $\alpha-Bi_2O_3$ was observed to have been formed in the sinter with its amount increasing roughly with increasing temperature or $Bi_2O_3$ content. The BOC powder was superior in sinterability to other alternative electrolyte materials such as GDC, ScSZ, and LSGM with the minimum sintering temperature for a relative density of $95\%$ or larger as low as $1100^{\circ}C$. The ionic conductivity of BOC increased with $Bi_2O_3$ content and the maximum value of 0.119 S/cm was obtained at $800^{\circ}C$ for $Bi_{0.3}Ce_{0.7}O_{1.85}$.

Magnetic Properties of NiZn-ferrite Synthesized from The Refined Waste Iron Oxide Catalyst (정제된 산화철 폐촉매로부터 합성된 NiZn-페라이트의 자기적 특성)

  • Park, Sang-Il;Lee, Hyo-Sook;Choi, Hyun-Seok;Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • NiZn-ferrites were synthesized from the waste catalysts. which were by product of styrene monomer process and buried underground as an industrial wastes, and their magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900℃ and sintering at 1325℃ for 5 hours. The initial permeabilities were measured and reflection losses were calculated from S-parameters for the composition of Ni/sub x/Zn/sub 1-x/Fe₂O₄(x=0.36, 0.50, 0.66) and (Ni/sub 0.5/Zn/sub 0.5)/sub 1-y/Fe/sub 2+y/O₄(y=-0.02, 0, 0.02).

Synthesis and Microstructure of Porous Al2O3 with Nano-Sized Cu Dispersions (나노크기 Cu 분산입자를 갖는 Al2O3 다공체의 제조 및 미세조직 특성)

  • Yoo, Ho-Suk;Kim, An-Gi;Hyun, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • Porous $Al_2O_3$ dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous $Al_2O_3$, camphene was used as the sublimable vehicle. Camphene slurries with $Al_2O_3$ content of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at $1400^{\circ}C$ for 1 h. Cu particles were dispersed in porous $Al_2O_3$ by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about $150{\mu}m$; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated $Al_2O_3$ particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous $Al_2O_3$ with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.

Processing, structure, and properties of lead-free piezoelectric NBT-BT

  • Mhin, Sungwook;Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.160-165
    • /
    • 2015
  • Lead-free piezoelectric materials have been actively studied to substitute for conventional PZT based solid solution, $Pb(Zr_xTi_{1-x}O_3)$, which occurs unavoidable PbO during the sintering process. Among them, Bismuth Sodium Titanate, $Na_{0.5}Bi_{0.5}TiO_3$ (abbreviated as NBT) based solid solution is attracted for the one of excellent candidates which shows the strong ferroelectricity, Curie temperature (Tc), remnant polarization (Pr) and coercive field (Ec). Especially, the solid solution of rhombohedral phase NBT with tetragonal perovskite phase has a rhombohedral - tetragonal morphotropic phase boundary. Modified NBT with tetragonal perovskite at the region of MPB can be applied for high frequency ultrasonic application because of not only its low permittivity, high electrocoupling factor and high mechanical strength, but also effective piezoelectric activity by poling. In this study, solid state ceramic processing of NBT and modified NBT, $(Na_{0.5}Bi_{0.5})_{0.93}Ba_{0.7}TiO_3$ (abbreviated as NBT-7BT), at the region of MPB using 7 % $BaTiO_3$ as a tetragonal perovskite was introduced and the structure between NBT and NBT-7BT were analyzed using rietveld refinement. Also, the ferroelectric and piezoelectric properties of NBT-7BT such as permittivity, piezoelectric constant, polarization hysteresis and strain hysteresis loop were compared with those of pure NBT.

Magnetic Properties of NiZn-ferrite Synthesized from Waste Iron Oxide Catalyst (산화철 폐촉매로부터 합성된 NiZn- 페라이트의 자기적 특성)

  • Hwang, Yeon;Kwon, Soon-Kil;Lee, Hyo-Sook;Je, Hae-June;Park, Sang-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1162-1166
    • /
    • 2001
  • NiZn-ferrite was synthesized from waste catalysts, which were produced from styrene monomer process and buried underground as an industrial wastes, and its magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900$\^{C}$ and sintering at 1230$\^{C}$ for 5 hours. The intial permeability was measured and reflection loss was calculated from S-parameters for the composition of Ni$\_$x/Zn$\_$1-x/Fe$_2$O$_4$(x=0.36, 0.50, 0.66). NiZn-ferrite synthesized from waste iron oxide catalyst showed a feasibility for the use as electromagnetic wave absorber in X-band.

  • PDF

A Study on Synthesis and Characterization of TiZrB$_2$ Composite by SHS Microwave (SHS 마이크로파에 의한 TiZrB$_2$ 복합재료의 합성 및 특성연구)

  • 이형복;윤영진;오유근;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 1999
  • TiZrB2 solid solution was synthesized using fine powders of Ti, Zr and B by SHS microwave process. The characterization of the synthesized powder and sintered bodies ws investigated. The combustion temperature and rate were increased with increasing the mole ratio of Zr in temperature profile, and showed the maximum combustion temperature and velocity values of 285$0^{\circ}C$ and 14.6mm/sec in Ti0.2Zr0.8B2 composition. Phase separation has been occured into a composite with TiB2 and ZrB2 phases from TiZrB2 solid solution, which was hot pressed sintering at 30 MPa for an hour at 190$0^{\circ}C$. At the composition of Ti0.8Zr0.2B2 the best properties has been obtained in relative density, bending strength, fracture toughness and hardness, with 99%, 680 MPa, 7.3MPa.m1/2 and 2750 Kg/$\textrm{mm}^2$ respectively.

  • PDF

Fabrication of Functionally Gradient Porous Al2O3-(t-ZrO2)/HAp Composites and their In-Vitro Study (조성 경사구조를 갖는 다공질 Al2O3-(t-ZrO2)/HAp 복합체의 제조 및 In-Vitro 실험)

  • Kim, Ki-Ho;Kim, Young-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.504-508
    • /
    • 2006
  • Functionally gradient porous $Al_2O_3-(t-ZrO_2)/HAp$ composites consist of 3 layers were fabricated using the multi-pass extrusion process at the various temperatures. The continuous pores were homogeneously formed in the $2^{nd}$ passed samples and their size was about $180{\mu}m$ in diameter. In the porous composites sintered at $1200-1400^{\circ}C$, the relative density and bending strength increased with the sintering temperature. The maximum values of relative density and bending strength in the $2^{nd}$ passed $Al_2O_3-(t-ZrO_2)/HAp$ composites were 62.2% and 107.8 MPa, respectively. In order to investigate the growth behavior of osteogenic cells on the functionally gradient porous $Al_2O_3-(t-ZrO_2)/HAp$ composites, an in vitro test was performed, using human osteoblast-like MG-63 cells. The cells were well attached and grown on the rough surface of the inside of the functionally gradient porous body.

Phase Evolution, Microstructure and Microwave Dielectric Properties of Zn1.9-2xLixAlxSi1.05O4 Ceramics

  • Kim, Yun-Han;Kim, Shin;Jeong, Seong-Min;Kim, So-Jung;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.215-220
    • /
    • 2015
  • Phase evolution, microstructure, and microwave dielectric properties of $Li_2O$ and $Al_2O_3$ doped $Zn_{1.9}Si_{1.05}O_4$, i.e., $Zn_{1.9-2x}Li_xAl_x-Si_{1.05}O_4$, ceramics (x = 0.02 ~ 0.10) were investigated. The ceramics were densified by $SiO_2$-rich liquid phase composed of the Li-Al-Si-O system, indicating that doped Li and Al contributed to the formation of the liquid. As the secondary phase, ${\beta}$-spodumene solid solution with the composition of $LiAlSi_3O_8$ was precipitated from the liquid during the cooling process. The dense ceramics were obtained for the specimens of $$x{\geq_-}0.06$$ showing the rapid densification above $1000^{\circ}C$, implying that a certain amount of liquid is necessary to densify. The specimen of x = 0.06 sintered at $1050^{\circ}C$ exhibited good microwave dielectric properties; the dielectric constant and the quality factor ($Q{\times}f_0$) were 6.4 and 11,213 GHz, respectively.

Fabrication, Magnetic and Magnetoresistive Properties of Bi-Doped Lanthanum Manganites (Bi 첨가 란탄 망가나이트의 제조, 자기 및 자기저항 특성)

  • 김덕실;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.239-244
    • /
    • 1999
  • Bi-doped lanthanum magnetics $(La_{0.67-x}Bi_xCa_{0.33}MnO_3(x\;=\;0,\; 0.04,\; 0.1,\; 0.2))$ samples have been prepared by standard ceramic process. The crystallinity and microstructures of the samples have been investigated by x-ray diffractometry and optical microscopy, respectively. The magnetic and magnetoresistive properties of the samples have been measured by vibrating sample magnetometery and van der Pauw method, respectively, at the temperatures ranging of 100 K~300 K with applied magnetic field of 0.4~0.5 T. Good crystallinity and high Curie temperature (275 K) have been obtained for the Bi-doped samples with small dosage (x = 0.04, 0.1) even they were sintered at 120$0^{\circ}C$, which is about 20$0^{\circ}C$ lower than normal sintering temperature of 140$0^{\circ}C$. The Bi-doped samples with the small dosage showed lower relative electrical resistivity and higher magneto-resistive ratio compared to the undoped sample in the most temperatures measured. The Bi-doped samples also exhibited large magnetoresisitve ratio (maximum of 15% for x = 0.1) at room temperature even under a weak magnetic field of 0.4 T.

  • PDF