• Title/Summary/Keyword: Sintering mechanisms

Search Result 41, Processing Time 0.029 seconds

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Elaboration of (Steel/Cemented Carbide) Multimaterial by Powder Metallurgy

  • Pascal, Celine;Chaix, Jean-Marc;Dutt, Ankur;Lay, Sabine;Allibert, Colette H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.291-292
    • /
    • 2006
  • A steel/cemented carbide couple is selected to generate a tough/hard two layers material. Sintering temperature and composition are deduced from phase equilibria, and experimental studies are used to determine optimal conditions. Liquid migration from the hard layer to the tough one is observed. Microstructure evolution during sintering of the tough material (TEM, SEM, image analysis) evidences coupled mechanisms of pore reduction and WC dissolution. Liquid migration, as well as interface crack formation due to differential densification are limited by suitable temperature and time conditions.

  • PDF

Fabrication and Mechanical Properties of Cordierite/$ZrO_2$ Composites by Pressureless Sintering

  • Enhai Sun;Choa, Yong-Ho;Tohru Sekino;Koichi Niihara
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.233-242
    • /
    • 2000
  • Cordierite/ZrO$_2$ composites with 5 to 25wt% ZrO$_2$ were fabricated by prssureless sintering, and their densification behavior, fracture strength, fracture toughness, microstructure and thermal expansion behavior were studied. The ZrO$_2$ addition into cordierite matrix affects the densification behavior and mechanical properties of the composites. By dispersing 25wt% ZrO$_2$, densified cordierite/ZrO$_2$ composite with a relative density of 98.5% was obtained at optimum sintering condition of 144$0^{\circ}C$/2H. Both fracture strength and toughness were increased from 140 to 290MPa and from 1.6 to 3.5 MPam$\frac{1}{2}$, respectively, by dispersing 25wt% ZrO$_2$ into the cordierite matrix. ZrO$_2$ particles were homogenously dispersed into cordierite matrix, which intragranular particles were fine(<100nm) and intergranular particles were coarse. The toughening mechanisms in the present composites were mainly attributed to martensitic transformation toughening. Then, the addition of ZrO$_2$ is likely to have little deleterious effect upon thermal expansion coefficient of cordierite.

  • PDF

Analysis of Conductivity Variation and Conduction Mechanism in Bulk NiO Based on Sintering Conditions

  • Ju-Hyeon Lee;Tae-Soo Yeo;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.418-421
    • /
    • 2023
  • Multilayer Ceramic Capacitors (MLCCs) are essential passive components in the electronics industry, known for their high capacitance due to the multilayer structure comprising inner electrodes and dielectric layers. Nickel electrodes are commonly used in MLCCs as the inner electrodes, and to prevent oxidation during the co-firing of the dielectric layers with nickel electrodes, reducing atmosphere is required. However, reducing atmosphere sintering can also induce a reduction of the dielectric, necessitating precise control of oxygen partial pressure. To explore the possibility of using oxide electrodes that do not require reducing atmosphere sintering, we analyze the electrical properties of nickel oxide (NiO) as a potential candidate. As a preliminary study on its use as an alternative inner electrode, the correlation between microstructure and electrical properties of bulk NiO under different sintering conditions was investigated to gain insights into the conduction mechanisms of the material.

Sintering behavior and mechanical properties of the $Al_2O_3-SiC$ nano-com-posite using a spark plasma sintering technique ($Al_2O_3-SiC$ 나노복합체의 방전 플라즈마 소결 특성 및 기계적 물성)

  • 채재홍;김경훈;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.309-314
    • /
    • 2003
  • A spark plasma sintering technique has been used for the fabrication of $Al_2O_3$-SiC nanocomposites at the low temperature of $1100^{\circ}C$$1500^{\circ}C$. The sintered $Al_2O_3$-SiC composites shows very homogeneous microstructure without any particular abnormal grain growth, indicating that the addition of nano-sized SiC particles is very effective to control grain growth and to induce the residual stress in the $Al_2O_3$ matrix, resulting in the intragranular fracture. These SiC particles are present in the grain boundaries and also intragrain, depending on the sintering condition, and improve remarkably the mechanical properties of $Al_2O_3$-SiC composite through the mechanisms of strengthening and toughening induced by crack diffraction and crack bridging.

Sintering Characteristics of ZnO Powder Prepared by Precipitation Method (침전법으로 제조된 ZnO 분체의 소결특성)

  • 강상규;김경남;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.404-410
    • /
    • 1993
  • The characterization and sintering behavior of ZnO powders prepared by precipitation method were investigated. ZnO powders were synthesized using the aqueous solutions of ZnCl2 and NH4OH as a precipitation agent, which were crystallized in the shape of plate-like. The grain growth of ZnO(0.68${\mu}{\textrm}{m}$, 1.3${\mu}{\textrm}{m}$ and 3.4${\mu}{\textrm}{m}$) has been studied for temepratures from 100$0^{\circ}C$ to 130$0^{\circ}C$, and the rate of densification was inversely proportional to the ZnO particle size. Densification proceeded slowly by diffusion mechanisms above at 100$0^{\circ}C$. In this work, the grain growth kinetic exponent(n) was 3. The temperature dependence of ZnO grain growth was plotted, and the activation energy of grain growth was 75~85Kcal/mol.

  • PDF

A Study on the Manufacturing Rapid Prototype Using Bronze (Bronze를 이용한 쾌속조형제조에 대한 연구)

  • 전병철;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.204-209
    • /
    • 1995
  • The implementation of rapid prototyping technologies has been developed for automotive engineering by utilizing concurrent engineering principes integrated with slective laser sintering. The Selective Laser Sintering, in which a part is generated in layers form powder using a computer-controlled laser scanning apparatus and power feed system. An over view of the basic principles of SLS Machine operation is given. Binding mechanisms are described for power which becomes thermally activated bye the scanning laser beam; viscous flow and melting of a low-melting-point phase in powder. The production of parts from metal is described, including post processing to improve structural integrity and induce a transformation.

  • PDF

Characteristics and Effects for the Mechanical Properties on the Wearness of the ZTA System with $Cr_2O_3$ and $HfO_2$) as Additives (ZTA계에서 첨가물($Cr_2O_3$, $HfO_2$)에 따른 물성 변화 및 기계적 성질이 마모성에 미치는 영향)

  • 최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.369-382
    • /
    • 1990
  • ZrO2-Toughened Alumina-Ceramics(ZTA) with Cr2O3 and HfO2 as addition were synthesized by assintering method for solid solution of Al2O3/Cr2O3 and ZrO2/HfO2, and were prepared by pressureless sintering at 1$600^{\circ}C$. The effects of Cr2O3 and HfO2 on the thermal and mechanical properties, the sintering mechanism, and the wearness between theory and experiment were investigated. Among three kinds of mechanisms such as stress-induced transformation, microcracking, and crack deflection it contributed to the ZTA system with a few exceptons according to composite. We show that wearness can be estimated sufficiently by HV and KIC through theory and experiment.

  • PDF

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

Mechanical and Microstructural Characterization of ZTA-SiC Whisker Composite (ZTA-SiC whisker계 재료의 기계적 및 구조적 특성)

  • 이응상;최성철;정연길
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.696-704
    • /
    • 1991
  • ZrO2-Toughened Alumina-Ceramics (ZTA) with SiC Whisker as dispersive additive were prepared by pressureless sintering at 1$600^{\circ}C$ and 1$650^{\circ}C$ and by HIPing at 1$600^{\circ}C$ in Ar atmosphere. Effects of SiC-Whisker addition on microstuructural, mechanical, and thermal properties were investigated and the toughening mechanisms between theory and experiment were compared. Specimens with 15 vol% Whisker prepared by HIPing showed 8.26 MPa.ma1/2 in fracture toughness and 600 MPa in flexural strength owing to contribution of the three mechanisms such as crack deflection, whisker bridging and whisker pullout in spite of difference between the theoretical and experimental values due to the partial inhomogeneous dispersion of SiC-Whisker in the matrix and the processing flaw.

  • PDF