• 제목/요약/키워드: Sintering effect

검색결과 1,170건 처리시간 0.028초

Effect of MgO-P2O5 Sintering Additive on Microstructure of Sintered Hydroxyapatite (HAp) Bodies and Their In-Vitro Study

  • Lee, Byong-Taek;Youn, Hyeong-Chul;Lee, Chi-Woo;Song, Ho-Yeon
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.100-106
    • /
    • 2007
  • The effects of $MgO-P_2O_5$ based sintering additive on the microstructure and material and biological properties of hydroxyapatite $(HAp,\;Ca_{10}(PO_4)_6(OH)_2)$ ceramic were investigated using XRD, SEM and TEM techniques. The $MgO-P_2O_5$ sintering additive improved the material properties and increased the grain size in the sintered HAp bodies. As the content of sintering additive increased over 4 wt%, a small amount of the HAp phase was decomposed and transformed to ${\beta}-TCP$. In the 2 wt% $MgO-P_2O_5$ content HAp sintered body, the maximum values of density and hardness were respectively about 3.10 gm/cc and 657 HV. However, the maximum fracture toughness in the HAp body containing 8 wt% $MgO-P_{2}O_{5}$ was about $1.02MPa{\cdot}m^{1/2}$ due to the crack deflection effect. Human osteoblast like MG-63 cells and osteoclast like raw 264.7 cells were well grown and fully covered all of the HAp sintered bodies. The osteoblast cells were grown with spindle-shaped and the osteoclast cells had a grape-like round shape.

Effect of Li3BO3 Additive on Densification and Ion Conductivity of Garnet-Type Li7La3Zr2O12 Solid Electrolytes of All-Solid-State Lithium-Ion Batteries

  • Shin, Ran-Hee;Son, Sam-Ick;Lee, Sung-Min;Han, Yoon Soo;Kim, Yong Do;Ryu, Sung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.712-718
    • /
    • 2016
  • In this study, we investigate the effect of the$Li_3BO_3$ additive on the densification and ionic conductivity of garnet-type $Li_7La_3Zr_2O_{12}$ solid electrolytes for all-solid-state lithium batteries. We analyze their densification behavior with the addition of $Li_3BO_3$ in the range of 2-10 wt.% by dilatometer measurements and isothermal sintering. Dilatometry analysis reveals that the sintering of $Li_7La_3Zr_2O_{12}-Li_3BO_3$ composites is characterized by two stages, resulting in two peaks, which show a significant dependence on the $Li_3BO_3$ additive content, in the shrinkage rate curves. Sintered density and total ion conductivity of the system increases with increasing $Li_3BO_3$ content. After sintering at $1100^{\circ}C$ for 8 h, the $Li_7La_3Zr_2O_{12}-8$ wt.% $Li_3BO_3$ composite shows a total ionic conductivity of $1.61{\times}10^{-5}Scm^{-1}$, while that of the pure $Li_7La_3Zr_2O_{12}$ is only $5.98{\times}10^{-6}Scm^{-1}$.

펄스전류 활성 소결에 의해 제조된 나노크기의 TiAl계 금속간화합물의 미세구조와 기계적 특성에 미치는 고에너지 기계적 밀링시간의 영향 (Effect of High-Energy Mechanical Milling Time on Microstructure and Mechanical Properties of the Nano-sized TiAl Intermetallic Compounds Fabricated by Pulse Current Activated Sintering)

  • 김지영;우기도;강덕수;김상혁;박상훈
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.161-166
    • /
    • 2011
  • The aim of this study was to determine the effect of high-energy mechanical milling (HEMM) time and sintering temperature on microstructure and mechanical properties of the TiAl composite fabricated by pulse current activated sintering. TiAl intermetallic powders were milled by HEMM for 1h, 4h, and 8h respectively. Thermal analysis was used to observe the phase transformation of the milled TiAl powders. The sintering time decreased with increase of milling time. The hardness and fracture toughness of the sintered specimens also was improved with increasing milling time. The grain size of the sintered specimens which was milled for 4h was in the range of 50~100 nm.

이트리아 소결체의 특성에 글라스프릿 첨가가 미치는 영향 (Effect of Glass Frit Addition on Characteristics of Yttria Ceramics)

  • 이지선;김선욱;노무근;오창용;김진호
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.303-308
    • /
    • 2024
  • The semiconductor and display industries require the development of plasma resistant materials for use in high density plasma etching process equipment. Yttria (Y2O3) is a ceramic material mainly used to ensure good plasma resistance properties, which requires a dense microstructure. In commercial production, a sintering process is applied to reduce the sintering temperature of Y2O3. In this study, the effect of the addition of glass frit to the sintered specimen was examined when manufacturing yttria sintered specimens for semiconductor process equipment parts. The Y2O3 specimen was shaped into a Ø50 mm size and then sintered at 1,600 ℃ for 1~8 h. The characteristics, X-ray diffraction pattern, densities, contraction rate of the specimen, and swelling of the surface of the Y2O3 specimens were investigated as a function of the sintering time and glass frit addition. The Y2O3 specimen exhibited a density of over 4.9 g/cm3 as the sintering time increased, and the swelling phenomenon characteristics were improved by glass frit, by controlling particle size.

Mn-Zn Ferrite의 소결조건이 미세조직 및 자기특성에 미치는 영향 (The Effect of Sintering Conditions on Microstructures and Magnetic Properties of Mn-Zn Ferrite)

  • 홍순형;변수일;권오종
    • 한국세라믹학회지
    • /
    • 제16권1호
    • /
    • pp.3-12
    • /
    • 1979
  • The effects of sintering temperature and sintering atmosphere on magnetic properties and microstructuresof Mn-Zn ferrites have been studied. Mixture of 52.8mole% $Fe_2O_3$, 26.4mole% MnO, 15.1mole0% ZnO and 5.7mole% NiO was prepared, and 0.1mole% CaO, 0.02mole% $SiO_2$ were added as minor additives. After calcining and ball milling the powder was granulated for compacting. The specimens were sintered at $1, 250^{\circ}$, $1, 300^{\circ}$and 1, 35$0^{\circ}C$ in the various atmosphere of $N_2$, $N^_2\DIV0.6% O_2$, $N_2+2.7% O_2$, $N_2+4.1% O_2$, $N^2+8.2% O_2$ and air for 3 hours and cooled in $N_2$ atmosphere. The grian growth rate and densities increase as sintering temperature and oxygen content of atmosphere increase. At the sintering temperature of $1, 250^{\circ}C$ the initial permeabilities increase as oxygen content of atmosphere increase. At the sintering temperature of$ 1, 300^{\circ}$and $1, 350^{\circ}$ the initial permeabilities show maximum values at $N_2+4.1% O_2$ atmosphere. The secondary peaks of initial permeabilities are observed between 100$^{\circ}$and 20$0^{\circ}C$, and the positions of secondary peaks move to higher temperature as oxygen content of atmosphere increases. Q-factors decrease as sintering temperature increases and oxygen content of atmosphere decreases.

  • PDF

Sinterability of Low-Cost 3Y-ZrO2 Powder and Mechanical Properties of the Sintered Body

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Jung, Seung-Hwa;Kim, Jae-Yuk;Yun, Jon-Do
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.285-291
    • /
    • 2017
  • This study investigated the effects of grain size and phase constitution on the mechanical properties of $3Y-ZrO_2$ by varying the sintering conditions. The raw powder prepared by a low-cost wet milling using the coarse solid oxide powders was sintered by both pressureless sintering and hot-pressing, respectively. As increasing holding time at $1450^{\circ}C$ for pressureless sintering, it promoted the microstructural coarsening of matrix grains and the phase transformation to tetragonal phase, whereas the bimodal microstructure embedded with abnormal $cubic-ZrO_2$ grains was observed regardless of sintering time. On the other hand, the specimens hot-pressed at $1300^{\circ}C$ for 2 h reached ~ 97% of relative density with homogeneous fine microstructure and mixed phase constitution. It was found that the proportion of untransformed monoclinic zirconia had the most adverse effect on the biaxial strength compared to the impacts of grain size and density. The pressureless sintering of the low-cost powder for prolonged sintering time to 8 h led to a decent combination of mechanical properties ($H_V=13.2GPa$, $K_{IC}=8.16MPa{\cdot}m^{1/2}$, ${\sigma}=981MPa$).

소결조제 변화에 따른 PCW-PMN-PZT세라믹스의 저온소결 및 압전특성 (Low Temperature Sintering and Piezoelectric Properties of PCW-PMN-PZT Ceramics with the Variation of Sintering Aids)

  • 정광현;이덕출;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1320-1325
    • /
    • 2004
  • In this study, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PCW-PMN-PZT ceramics added with Li$_2$CO$_3$, Bi$_2$O$_3$ and CuO as sintering aids were manufactured, and their microstructural, dielectric and piezoelectric properties were investigated. When the only CuO was added, specimens could not be sintered below 98$0^{\circ}C$. However, when Li$_2$CO$_3$ and Bi$_2$O$_3$ were added, specimens could be sintered below 98$0^{\circ}C$. Li$_2$CO$_3$ and Bi$_2$O$_3$ addition were proved to lower sintering temperature of piezoelectric ceramics due to the effect of Li$_2$O-Bi$_2$O$_3$ liquid phase. Li$_2$CO$_3$ and Bi$_2$O$_3$ added specimens showed higher piezoelectric properties than those of the only CuO added specimens. At 0.2 wt% Li$_2$CO$_3$ and 0.3 wt% Bi$_2$O$_3$ added specimen sintered at 92$0^{\circ}C$, the dielectric constant of 1457, electromechanical coupling factor of 0.56 and mechanical quality factor of 1000 were shown, respectively. These values are suitable for multilayer piezoelectric transformer application.

Y2O3 첨가가 AlN 세라믹스의 방전 플라즈마 소결 거동 및 열전도도에 미치는 영향 (Effects of Y2O3 Addition on Densification and Thermal Conductivity of AlN Ceramics During Spark Plasma Sintering)

  • 차재홍;박주석;안종필;김경훈;이병하
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.827-831
    • /
    • 2008
  • Spark plasma sintering (SPS) of AlN ceramics were carried out with ${Y_2}{O_3}$ as sintering additive at a sintering temperature $1,550{\sim}1,700^{\circ}C$. The effect of ${Y_2}{O_3}$ addition on sintering behavior and thermal conductivity of AlN ceramics was studied. ${Y_2}{O_3}$ added AlN showed higher densification rate than pure AlN noticeably, but the formation of yttrium aluminates phases by the solid-state reaction of ${Y_2}{O_3}$ and ${Al_2}{O_3}$ existed on AlN surface could delay the densification during the sintering process. The thermal conductivity of AlN specimens was promoted by the addition of ${Y_2}{O_3}$ up to 3 wt% in spite of the formation of YAG secondary phase in AlN grain boundaries because ${Y_2}{O_3}$ addition could reduced the oxygen contents in AlN lattice which is primary factor of thermal conductivity. However, the thermal conductivity rather decreased over 3 wt% addition because an immoderate formation of YAG phases in grain boundary could decrease thermal conductivity by a phonon scattering surpassing the contribution of ${Y_2}{O_3}$ addition.

Y2O3 함량과 소결조건에 따른 상압소결 AlN 세라믹스의 열전도도 고찰 (Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of Y2O3 Content and Sintering Condition)

  • 나상문;고신일;이상진
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.368-372
    • /
    • 2011
  • Aluminum nitride (AlN) has excellent thermal conductivity, whereas it has some disadvantage such as low sinterability. In this study, the effects of sintering additive content and sintering condition on thermal conductivity of pressureless sintered AlN ceramics were examined on the variables of 1~3 wt% sintering additive ($Y_2O_3$) content at $1900^{\circ}C$ in $N_2$ atmosphere with holding time of 2~10 h. All AlN specimens showed higher thermal conductivity as the $Y_2O_3$ content and holding time increase. The formation of secondary phases (yttrium aluminates) by reaction of $Y_2O_3$ and $Al_2O_3$ from AlN surface promoted the thermal conductivity of AlN specimens, because the secondary phases could reduce the oxygen contents in AlN lattice. Also, thermal conductivity was increased by long sintering time because of the uniform distribution and the elimination of the secondary phases at the grain boundary by the evaporation effect during long holding time. A carbothermal reduction reaction was also affected on the thermal conductivity. The thermal conductivity of AlN specimens sintered at $1900^{\circ}C$ for 10 h showed 130~200W/mK according to the content of sintering additive.

CuO 세라믹스의 소결 온도 및 분위기에 따른 미세구조와 수축거동 변화 (Effect of the Sintering Temperature and Atmosphere on the Microstructural Evolution and Shrinkage Behavior of CuO Ceramics)

  • 송주현;이정아;이준형;허영우;김정주
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.528-534
    • /
    • 2012
  • In this study, the densification behavior and microstructural evolution of CuO were examined when this material was sintered at different temperatures in $O_2$, air and Ar atmospheres. The CuO samples maintained their phases even after prolonged sintering at $900-1100^{\circ}C$ in an oxygen atmosphere. When sintering in air, the densification was faster than it was when sintering in oxygen. However, when the samples were sintered at $1100^{\circ}C$, large pores were observed in the sample due to the phase transformation from CuO to $Cu_2O$ which accompanies the generation of oxygen gas. The pore channels in the sample became narrower as the sintering time increased, eventually undergoing a Rayleigh breakup and forming discrete isolated pores. On the other hand, CuO sintering in Ar did not contribute to the densification, as all CuO samples underwent a phase transformation to $Cu_2O$ during the heating process.