• Title/Summary/Keyword: Sintering effect

Search Result 1,170, Processing Time 0.027 seconds

Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies (첨가제의 조성이 폐유리-점토 타일의 곡강도에 미치는 영향)

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.416-422
    • /
    • 2013
  • Cullet-loess tile bodies are successfully fabricated using cullet, loess, hollow microspheres, and sintering additives (borosilicate glass frit, boric acid, or fumed silica) as starting materials. The effects of the additive composition and sintering temperature on the sintered density and flexural strength of the cullet-loess tile bodies are investigated. The sintered density of the cullet-loess tile bodies increases with an increase in the sintering temperature as a result of the enhanced densification of pore walls through the viscous flow of a liquid phase formed from the glass frit and sintering additives. The flexural strength of the cullet-loess tile bodies increases with increases in the sintering temperature and the cullet content in the starting composition. A maximal flexural strength of 40 MPa is obtained in cullet-loess tile bodies sintered with glass frit at $800^{\circ}C$ in air.

Sintering and Dielectric Properties in Cordierite/Glass Composite for LTCC Application (Cordierite/Glass Composite계 LTCC 소재의 소결 및 유전특성)

  • Hwang, Il-Sun;Yeo, Dong-Hun;Shin, Hyo-Soon;Kim, Jong-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • Recently, there has been growing interest in low loss and low dielectric constant material for LTCC application, as the frequency range for electronic devices increases. This study was designed to evaluate the effect of cordierite filler for low dielectric constant LTCC material. From the previous experiments, two glass compositions of B-Si-Al-Zn-Ba-Ca-O and B-Si-Al-Sr-Ca-O system, were chosen. Each powder of two glass compositions was sintered respectively with commercial cordierite powder in temperature range from $800^{\circ}C\;to\;900^{\circ}C$. Crystalline cordierite and glass peaks were affected only with two factors of composition and sintering temperature among various factors. With the optimized condition of two cordierite/glass compositions, obtained dielectric constant was below 5.5 and quality factor was above 1,000. Closed pore of sintered body was controled by sintering temperature and sintering time. When cordierite/glass composite with ratio of 5.5:4.5 was sintered at $900^{\circ}C$, densification was sufficient with good dielectric characteristics of ${\epsilon}_r<5.1,\;Q{\ge}1,000$. Residual fine closed pores could be reduced with control of sintering temperature and time. 3 point bending strength and chemical durability were evaluated to obtain feasibility for substrate material.

Effect of Y2O3 and La2O3 on the Sintering Behavior of Alumina (Y2O3 및 La2O3 첨가가 알루미나의 소결거동에 미치는 영향)

  • Lee, Keun Bong;Kang, Jong Bong
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.90-94
    • /
    • 2016
  • In this study, to increase the strength and enhance the sintering property of $Al_2O_3$, $Y_2O_3$ and $La_2O_3$ were added; the effects of these additions on the sintering characteristics of $Al_2O_3$ were observed. Adding 1% of $Y_2O_3$ to $Al_2O_3$ repressed the development of abnormal particles and reduced the grain boundary migration of $Al_2O_3$, curbing pores to capture particles; as such, the material showed a fine microstructure. But, when over 2% of $Y_2O_3$ was added, the sintering property was reduced because of abnormal particle grain growth and pore formation in particles. Adding 1% of $Y_2O_3$ and $La_2O_3$ to $Al_2O_3$ led to the development of abnormal particles and formed pores in the particles; when over 3% of $La_2O_3$ was added, the sintering property was reduced because the shape of the $Al_2O_3$ particles changed to angled plates.

Effect of Sintering Additive and Composition on Cutting Performance of SiAlON (SiAlON의 절삭성능에 미치는 소결조제와 조성의 영향에 대한 연구)

  • Choi, Jae-Hyeong;Lee, Sung-Min;Nahm, Sahn;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.415-420
    • /
    • 2019
  • SiAlON ceramics are used as ceramic cutting tools for heat-resistant super alloys (HRSAs) due to their excellent fracture toughness and thermal properties. They are manufactured from nitride and oxide raw materials. Mixtures of nitrides and oxides are densified via liquid phase sintering by using gas pressure sintering. Rare earth oxides, when used as sintering additives, affect the color and mechanical properties of SiAlON. Moreover, these sintering additives influence the cutting performance. In this study, we have prepared $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m = 0.5; n = 0.5, 1.0) ceramics and manufactured SiAlON ceramics, which resulted in different colors. In addition, the characteristics of the sintered SiAlON ceramics such as fracture toughness and microstructure have been investigated and results of the cutting test have been analyzed.

Effect of Sintering Process with Co3O4 on the Performance of LSCF-Based Cathodes for Solid Oxide Fuel Cells

  • Khurana, Sanchit;Johnson, Sean;Karimaghaloo, Alireza;Lee, Min Hwan
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.637-642
    • /
    • 2018
  • The impact of the sintering process, especially in terms of sintering temperature and sintering aid concentration, on the ohmic transport and electrode performance of $(La_{0.80}Sr_{0.20})_{0.95}CoO_{3-{\delta}}$-gadolinia-doped ceria (LSCF-GDC) cathodes is studied. The ohmic and charge-transfer kinetics exhibit a highly coupled $Co_3O_4$ concentration dependency, showing the best performances at an optimum range of 4-5 wt%. This is ascribed to small grain sizes and improved connection between particles. The addition of $Co_3O_4$ was also found to have a dominant impact on charge-transfer kinetics in the LSCF-GDC composite layer and a moderate impact on the electronic transport in the current-collecting LSCF layer. Care should be taken to avoid a formation of excessive thermal stresses between layers when adding $Co_3O_4$.

Synthesis of Al-Ni-Co-Y Bulk Metallic Glass fabricated by Spark Plasma Sintering (방전 플라즈마 소결법을 이용한 Al-Ni-Co-Y 벌크 비정질 합금의 제조)

  • Jeong Pyo Lee;Jin Kyu Lee
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 ㎛ or less and 20-45 ㎛. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 ㎛ or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.

Effect of Nozzle Distance and Angle in the Iron-ore Sintering Dual Burner on Flame Characteristics (철광석 소결용 듀얼 버너의 노즐 간격과 각도가 화염 특성에 미치는 영향)

  • Lee, Young-Jun;Hwang, Min-Young;Kim, Gyu-Bo;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.163-170
    • /
    • 2010
  • The objective of this study is to investigate the combustion characteristics of dual type of sintering burner as a function of design parameters using lab-scale sintering burner through experimental and numerical approaches. Combustion characteristics were evaluated by the radical method. The numerical model was verified as a temperature using R type of thermocouple at the bed surface. The effect of nozzle distance and angle were performed through the CFD analysis, and the comparison of burner types. As a results, dual type burner has more wider and uniform flame distribution than single type burner. Asymmetry and 45 degree angle condition have been suggested as an optimal condition for the ignition of the sintering bed surface.

Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process (정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

Effect of Sintering Atmosphere and Carbon Addition on Sintered Density of M3/2 Grade High Speed Steel Powder (M3/2계 고속도 공구강 분말의 소결분위기와 탄소첨가가 소결밀도에 미치는 영향)

  • Ahn, Jin-Hwan;Heo, Jong-Seo;Joo, Dong-Won;Jung, Eun;Sung, Jang-Hyun
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.265-272
    • /
    • 1998
  • For the purpose of investigating the effect of sintering atmosphere and carbon addition on sintered density and microstructural characteristics, the M3/2 grade high speed steel powders with the addition of carbon are sintered in vacuum and $20%H_2/79%N_2/l%CH_4$ gas atmosphere. With the addition of 0 wt%C, 0.45wt%C and 1.15 wt%C the optimum sintering temperatures decrease down to $1260^{\circ}C$, $1210^{\circ}C$ and $1150^{\circ}C$ respectively for the vacuum sintered specimen, and also decrease down to $1130^{\circ}C$, $1120^{\circ}C$ and $1115^{\circ}C$ for the gas sintered specimen. The threshold temperatures for full densification decrease steeply with increasing carbon content of the sintered specimen, while this temperatures are slowly decreased at high carbon content. The vacuum sintered specimen shows the primary carbides of MC and $M_6C$ type at the optimum sintering temperature, and eutectic carbides of $M_2C$ and Fe-Cr type are produced in the oversintered specimen. The gas sintered specimen exhibits M6C and Fe-Cr type primary carbides at the optimum sintering temperature. The eutectic carbides of $M_6C$ and Fe-Cr type and MX type carbonitride are shown for the oversintered specimen in the gas atmosphere. The hardness of gas sintered specimen shows high value of 830-860 Hv due to the increment of carbide precipitation.

  • PDF

A Study on Polyamide-6 Sintering and Effect by $CO_2$ Laser ($CO_2$ Laser에 의한 Polyamide-6 소결과 그 영향에 관한 연구)

  • Bae S.W.;Kim D.S.;Ahn Y.J.;Kim H.I.;Choi K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.197-198
    • /
    • 2006
  • In the solid freeform fabrication (SFF) system using selective laser sintering (SLS), polyamide-12 powder is currently recognized as general material. In this study, some kinds of polyamide-6 powders with different shape and particlesize were fabricated to investigate the formability, the microstructure and mechanical properties. Also, to develop a more elaborate and rapid system, this study employs a new SLS device with a 3-axis dynamic focusing scanner system instead of the existing fe lens used in commercial SLS. Polyamide-6 powders having the average size of 100 m were treated thermally in order to keep the spherical symmetry in shape. These polyamide-6 powders were mixed with polyamide-12 powders having the average size of 50 m to give the bimodal distribution of size. These mixed powders showed the better fabrication in the selective laser sintering process because the smaller particles of polyamide-11 played an important role in the compact packing of powders by filling the void space between the large particles of polyamide-6. Also, Experiments have performed to evaluate the effect of a scanning path and sintering parameters by fabricating the various 3D objects.

  • PDF