• 제목/요약/키워드: Sintering effect

검색결과 1,170건 처리시간 0.028초

반응소결에 의한 SiC의 소결과 그 특성에 관한 연구 (초기 소결과정에서의 B4C 및 Y2O3의 첨가 영향) (Sintering of Silicon Carbide by Reaction Bonding and its Characteristics (Effect of Addition of B4C and Y2O3 in Initial Sintering Precess))

  • 백용혁
    • 한국세라믹학회지
    • /
    • 제25권6호
    • /
    • pp.609-614
    • /
    • 1988
  • This study was carried out to investigate the effects of B4C or Y2O3 additives on the tendency of sintering, $\beta$-SiC synthesis and mineral phase changes by reaction bonding of SiC at 145$0^{\circ}C$. At the sintering temperature of 145$0^{\circ}C$, the additives such as B4C or Y2O3 did not improved porosity and bending strength. Added more than 1.5% of Y2O3, 0.5-0.3% of B4C, the formation of $\beta$-SiC was increased. At higher temperature above 145$0^{\circ}C$, it seems that the bodies added B4C, contained 3C form of SiC were denser than that of Y2O3 added. Because the transition of 3Clongrightarrow4Hlongrightarrow6H promoted sintering.

  • PDF

Co2O3 첨가가 알루미나의 액상소결 및 기계적 물성에 미치는 영향 (Effect of Co2O3 addition on liquid phase sintering behavior and mechanical properties of commercial alumina)

  • 오복현;윤태규;공헌;김남일;이상진
    • 한국결정성장학회지
    • /
    • 제30권4호
    • /
    • pp.150-155
    • /
    • 2020
  • 구조용 세라믹재료로 주로 사용되는 알루미나(Al2O3)는 우수한 기계적 특성을 위해 치밀한 미세구조를 요구하며, 소결온도를 낮추기 위해 상업적으로 액상소결(liquid phase sintering)이 적용된다. 본 연구에서는 SiO2, MgO, CaO를 액상소결 조제로 사용하는 92 % 상업용 알루미나의 액상소결 시, 착색제(coloring agent)로 주로 사용되는 산화코발트(Co2O3)의 첨가량과 다양한 소결온도가 알루미나의 미세구조 및 기계적 특성에 미치는 영향을 고찰하였다. 약 11 w t% 산화코발트 첨가에 따라 1200℃부터 고상입자 재배열에 의한 수축이 시작되었고 1300℃ 이상의 온도에서 용해 재석출 및 합체(coalescence)에 의한 알루미나의 결정립 성장이 관찰되었다. 1400℃ 이상의 열처리 온도 혹은 과량의 Co2O3 첨가는 액상의 점도를 낮추어 소결밀도를 감소시켰고, 이와 함께 경도값도 감소하였다. 산화코발트를 11 w t% 첨가하여 1350℃에서 소결할 경우, 3.86 g/㎤의 밀도와 12.32 GPa의 경도를 갖는 치밀한 소결체 제조가 가능하였다.

방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성 (Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering)

  • 이경석;서성호;진상현;유봉영;정영근
    • 한국재료학회지
    • /
    • 제22권6호
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

배향된 $\beta-Si_3N_4$ Whisker를 함유하는 $Si_3N_4$ 복합체의 기계적 특성에 미치는 소결조제와 소결온도의 영향 (Effect of Sintering Additives and Sintering Temperature on Mechanical Properties of the $Si_3N_4$ Composites Containing Aligned $\beta-Si_3N_4$ Whisker)

  • 김창원;최명제;박찬;박동수
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.21-25
    • /
    • 2000
  • Gas pressure sintered silicon nitride based composites with 5 wt% $\beta$-Si3N4 whiskers were prepared, and the variations depending on sintering additives and sintering temperature were studied. Sintering additives were 6 wt% Y2O3-1 wt% MgO(6Y1M), 6 wt%Y2O3-1 wt% Al2O3(6Y1A), 6 wt% Y2O3-1 wt% SiO2(6Y1S), and whiskers were unidirectionally oriented by a modified tape casting technique. Samples were fully densified by gas pressure sintering at 2148 K and 2273 K. As the sintering temperature increased, the size of large elongated grains was increased. Three point flexural strength of 6Y1M and 6Y1M samples was higher than that of 6Y1S sample, and the strength decreased as the sintering temperature increased. The indentation crack length became shorter for the sample sintered at higher temperature, and the difference between the cracks length parallel to and normal to the direction of whisker alignment was decreased. In case of cracks 45$^{\circ}$off the whisker alignment direction, the crack length anisotropy disappeared.

  • PDF

마그네슘 합금 표면의 지르코니아 분말 레이저 소결과정에서 조사 패턴이 접합 계면 품질에 미치는 영향 (Effect of Laser Processing Patterns on the Bonding Interface Quality during Laser Sintering of Magnesium Alloys with Zirconia)

  • 윤상우;김주한
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.51-57
    • /
    • 2021
  • The quality of the ceramic sintered coating on a metal surface through laser surface treatment is affected by the laser irradiation pattern. Depending on the laser irradiation pattern, the amount of residual stress and heat applied or accumulated on the surface increases or decreases, affecting the thickness attained in the ceramic sintering area. When the heat energy accumulated in the sintering area is high, the ceramic and the metal alloy melt and sufficiently mix to form a homogeneous and thick bonding interface. In this study, the thermal energy accumulation in the region sintered with zirconia was controlled using four types of laser processing patterns. The thickness of the diffusion region is analyzed by laser-induced breakdown spectroscopy of Mg-ZrO2 generated by laser sintering zirconia powder on the magnesium alloy surface. On the basis of the analysis of the Mg and Zr present in the sintered region through LIBS, the effect of the irradiation pattern on the sintering quality is confirmed by comparing and analyzing the heat and mass transfer tendency of the diffusion layer and the degree of diffusion according to the irradiation pattern. The derived diffusion coefficients differed by up to 9.8 times for each laser scanning pattern.

철계 비동일분율 고엔트로피 합금의 인장 강도에 미치는 소결 조건 영향 (Effect of Sintering Condition on Tensile Strength of Fe-based Non-equiatomic High Entropy Alloy)

  • 서남혁;전준협;김광훈;박정빈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.221-226
    • /
    • 2021
  • We fabricate the non-equiatomic high-entropy alloy (NE-HEA) Fe49.5Mn30Co10Cr10C0.5 (at.%) using spark plasma sintering under various sintering conditions. Each elemental pure powder is milled by high-energy ball milling to prepare NE-HEA powder. The microstructure and mechanical properties of the sintered samples are investigated using various methods. We use the X-ray diffraction (XRD) method to investigate the microstructural characteristics. Quantitative phase analysis is performed by direct comparison of the XRD results. A tensile test is used to compare the mechanical properties of small samples. Next, electron backscatter diffraction analysis is performed to analyze the phase fraction, and the results are compared to those of XRD analysis. By combining different sintering durations and temperature conditions, we attempt to identify suitable spark plasma sintering conditions that yield mechanical properties comparable with previously reported values. The samples sintered at 900 and 1000℃ with no holding time have a tensile strength of over 1000 MPa.

RSM 법에 의한Li2O-Al2O3-SiO2 (LAS) 유리의 소결 거동과 결정화에 대한 연구 (A Study of Sintering Behavior and Crystallization in Li2O-Al2O3-SiO2 (LAS) Glass System by RSM)

  • 이규호;김영석;정영준;김태호;서진호;류봉기
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents results and observations obtained from a study of sintering behavior and crystallization in $Li_2O-Al_2O_3-SiO_2$ (LAS) Glass by screen printing method. The variable experimental conditions were determined carefully by Thermal-Mechanical Analyzer (TMA), Differential Thermal Analyzer (DTA) for setting the optimum transparent sintering conditions in LAS glass system, $10.5Li_2O-14.7Al_2O_3-58.1SiO_2-16.7B_2O_3(wt%)$, such as glass-ceramics which usually have low crystallization temperatures. Crystallization glasses generated during sintering was observed from diffraction patterns by X-Ray Diffraction (XRD), transmittance by UV-Vis spectrometer. Finally, the optimum sintering condition of LAS glass and the relation between factors and results in several sintering conditions were given by using Response Surface Methodology (RSM). From this study, we confirmed that crystallization interrupted densification during glass powder sintering. Furthermore, we observed that main effect of factors in glass powder sintering with concurrent crystallization depended on experimental conditions from main effects plot by MINTAB-14.

LPS-SiC 세라믹스의 제조특성에 미치는 $SiQ_2$ 입자크기의 영향 (Effects of $SiO_2$ Particle-size on Fabrication Properties of LPS-SiC Ceramics)

  • 김성훈;윤한기;김부안
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.162-165
    • /
    • 2006
  • In this study, Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method with $\beta$-SiC powder whose a particle size is 30nm and less on the average in argon condition at 1780 and $1800^{\circ}C$ under 20MPa. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of particle-size and temperature on $SiO_2$, LPS-SiC was fixed $Al_2O_3$, $Y_2O_3$ and then particle-size of $SiO_2$ were changed as two kinds. The system of particle-size and temperature on sintering additives which affects a property of sintering os well os the influence depending on particle-size and temperature of sintering additives were investigated by measurement of sintering properties. Such as measurement of sintering density, vikers hardness and observing of microstructure were investigated to make sure of the optimum condition which is about matrix of $SiC_f/SiC$ composites. Base on the composition of sintering additives, microstructure and sintering property correlation, the effect of particle-size of sintering additives are discussed. An experimental method to investigate the dynamic characteristics of bums in extreme environmental condition is established.

  • PDF

$(Gd_2O_3)_{0.05}(Y_2O_3)_{0.05}(ZrO_2)_{0.9}$계의 소결시간에 따른 미세구조와 전기전도도 (The Effect of Sintering Time in the Microstructure and Electric Conductivity of $(Gd_2O_3)_{0.05}(Y_2O_3)_{0.05}(ZrO_2)_{0.9}$ System)

  • 임용무;장복기;신동선;김동근;김종빈;윤성도
    • 한국전기전자재료학회논문지
    • /
    • 제11권12호
    • /
    • pp.1099-1107
    • /
    • 1998
  • In this study, the microstructure and electric conductivity of 5mol% $Gd_2O_3$-5mol% $Y_2O_3-ZrO_2$ system(5G5YZ) with a variation of sintering time at $1600^{\circ}C$ were investigated. By the result of TEM analysis of 5G5YZ sintered for 12h, a microcrack was observed near grain boundary. The change of the sintering time did not affect the lattice conductivity, but the grain boundary contribution was varied with the sintering time. The grain boundary conductivity of the sample sintered for 1h showed the highest value. Furthermore, the activation energy of the total conductivity was independent upon the sintering time and showed approximately 1.01eV. The highest conductivity measured at $1000^{\circ}C$ was 0.0197S/cm with the sample sintered for 1h. Comparing to 0h’s, the thickness ration of grain boundary as a function of sintering time were 0.88, 1.11 and 1.29 for 1h, 5h and 12h, respectively. In case of the sample sintered for 1h, the thickness of the grain boundary showed the lowest value. The increase of the sintering time over 1h made the decrease of the electric conductivity as well as the increase of the grain growth and the thickness of the grain boundary. As a result, it seemed that the proper sintering time for 5G5YZ composition was 1h.

  • PDF