• Title/Summary/Keyword: Sintering densification

Search Result 536, Processing Time 0.029 seconds

Effects of Fluoride Additions on Sintering and Microwave Dielectric Properties of $ZnWO_4$ (Fluoride 첨가가 $ZnWO_4$ 소결 및 고주파 유전특성에 미치는 영향)

  • Lee, Kyoung-Ho;Kim, Yong-Chul;Kim, Hong-Rae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.541-544
    • /
    • 2002
  • In this study, a new LTCC material using $ZnWO_4$-LiF system was attempted with respect to use as a capacitor layer in Front-End Module. Pure $ZnWO_4$ must be sintered above $1050^{\circ}C$ in order to obtain up to 98% of full density. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. LiF addition resulted in an liquid phase formation at $810^{\circ}C$ due to interaction between $ZnWO_4$ and LiF. Therefore $ZnWO_4$ with 0.5~1.5wt% LiF could be densified at $850^{\circ}C$. Addition of LiF slightly lowered the dielectric constant from 15.5 to 14.2~15. In the given LiF addition range, the sintering shrinkage increased with increasing LiF content. $Q{\times}fo$ value, however, decreased with increasing LiF content(or increasing densification). This is originated from the interaction between the liquid phase and $ZnWO_4$ and inhomogeneity of grain morphology.

  • PDF

The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals: (II) Preparation of Spodumene Powders with Sillimanite, Kaolin and Pyrophyllite Group Minerals (실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구: (II) Sillimanite, Kaolin 및 Pyrophyllite족 광물을 이용한 Spodumene 분말합성)

  • 박한수;조경식;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.784-794
    • /
    • 1994
  • Though spodumene have a law theraml expension and good thermal shock resistance, its sintering temperature is too close to its melting point in the application for industral purpose. Solving the problems, impurities within the silicate minerals act as a frit during firing, so its densification is expected through enlargement of sintering temperature range. By the heat treatment of starting materials, mixtures of silicate mineral, lithium carbonate, if necessary SiO2 or Al2O3 were added for stoichiometric correction, in the range of 1000~125$0^{\circ}C$ for 10 hrs, $\beta$-spodumene single phase was synthesized. Mixtures with sillimanite group minerals, $\beta$-spodumene was formed at 120$0^{\circ}C$ or 125$0^{\circ}C$ via intermediate phases of petalite, Li2SiO3 and LiAlO2. For the case of kaolin group minerals, synthesis were completed at 110$0^{\circ}C$ for Hadon pink kaolin, 120$0^{\circ}C$ for New Zealand white kaolin, When pyrophyllite group minerals were used, those were at the range of 1000~125$0^{\circ}C$. Spodumene was completed at lowest temperature, 100$0^{\circ}C$ from the mixture of Wando pyrophyllite among them. Microstructure of synthesized powders showed the inrregular lump shape such as densed crystallines.

  • PDF

Effect of Pr6O11/CoO Ratio on Electrical Characteristics of ZPCD-Based varistor Ceramics (ZPCD계 바리스터 세라믹스의 전기적 특성에 Pr6O11/CoO 비의 영향)

  • 남춘구;김향숙
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.876-882
    • /
    • 2002
  • The microstructure and electrical characteristics of ZPCD (ZnO-$Pr_{6}O_{11}$-CoO-$Dy_2O_3$) -based varistor ceramics were investigated with various $Pr_{6}O_{11}$/CoO ratios and sintering temperatures. The density of varistor ceramics with $Pr_{6}O_{11}$=1.0 was almost constant with sintering temperature, whereas it was increased noticeably in $Pr_{6}O_{11}$=0.5. Increasing $Pr_{6}O_{11}$ content enhanced the densification for any CoO content and the density was greatly affected not by CoO content but by $Pr_{6}O_{11}$ content. The varistor ceramics with $Pr_{6}O_{11}$/CoO=0.5/l.0 exhibited a higher nonlinearity than any other composition ratios. In particular, the varistor ceramics sintered at $1350^{\circ}C$ exhibited the best electrical properties, with nonlinear exponent of 37.8, leakage current of 7.6 ${\mu}$A, and tan $\delta$ of 0.059.

Properties of Low Temperature Sintered Porous Ceramics from Alumina-Zinc Borosilicate Glass (알루미나-아연붕규산염 유리를 이용한 저온 소결 다공성 세라믹스의 제조 및 특성)

  • Kim, Kwan-Soo;Song, Ki-Young;Park, Sang-Yeup;Kim, Shin;Kim, Sung-Jin;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.609-614
    • /
    • 2009
  • The low-temperature preparation of porous ceramics was carried out using mixtures of alumina-zinc borosilicate (ZBS) glass. The compositions of alumina-ZBS glass mixture with PMMA pore-former were unfortunately densified. Because PMMA was evaporated below the softening point of ZBS glass ($588{^{\circ}C}$), the densification through the pore-filling caused by the capillary force might occur. Howerver, those with carbon possessed pores where carbon was evaporated above the softening point. The porous ceramic having 35% porosity was successively fabricated by the low-temperature sintering process below $900{^{\circ}C}$ using 45 vol% of alumina, 45 vol% ZBS of glass, and 10 vol% of carbon as starting materials.

Selective Laser Sintering of Alumina Using an Inorganic Binder Monoclinic $HBO_2$ and Post-Processing

  • 이인섭
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 1998
  • A new low melting inorganic binder, monoclinic $HBO_2$, has been developed for Selective Laser Sintering (SLS) of alumina powder by dehydration process of boron oxide powder in a vacuum oven at $120^{\circ}C$. It led to better green SLS parts and higher bend strength far green and fired parts compared to other inorganic binders such as aluminum and ammmonium phosphate. This appeared to be due to its low viscosity and better wettability of the alumina particle surface. A low density single phase ceramic, aluminum borate ($Al_{18}B_4O_{33}$), and multiphase ceramic composites, $A_{12}O_3-A_{14}B_2O_9$, were successfully developed by laser processing of alumina-monoclinic $HBO_2$ powder blends followed by post-thermal processing; both $Al_{18}B_4O_{33}$ and $A_{14}B_2O_9$ have whisker-like grains. The physical and mechanical properties of these SLS-processed ceramic parts were correlated to the materials and processing parameters. Further densification of the $A_{12}O_3-A_{14}B_2O_9$ ceramic composites was carried out by infiltration of colloidal silica, and chromic acid into these porous SLS parts followed by heat-treatment at high temperature ($1600^{\circ}C$). The densities obtained after infiltration and subsequent firing were between 75 and 80% of the theoretical densities. The bend strengths are between 15 and 33 MPa.

  • PDF

MnO2 as an Effective Sintering Aid for Enhancing Piezoelectric Properties of (K,Na)NbO3 Ceramics

  • Jeong, Seong-Kyu;Hong, In-Ki;Do, Nam-Binh;Tran, Vu Diem Ngoc;Cho, Seong-Youl;Taib, Weon Pil;Lee, Jae-Shin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.399-403
    • /
    • 2010
  • The effects of $MnO_2$ doping on the crystal structure, ferroelectric, and piezoelectric properties of (K,Na)$NbO_3$ (KNN) ceramics have been investigated. $MnO_2$ was found to be effective in enhancing the densification and grain growth during sintering. X-ray diffraction analysis indicated that Mn ions substituted B-site Nb ions up to 2 mol%, however, further doping induced unwanted secondary phases. In comparison with undoped KNN ceramics, the well developed microstructure and the substitution to B-sites in 2 mol% Mn-doped KNN ceramics resulted in significant improvements in both piezoelectric coupling coefficient and electromechanical quality factor.

A Study on Densification Behvior of Austenitic Stainless Steel Powder Compacts Processed by Warm Compaction (온간 성형법으로 제작한 오스테나이트계 스테인레스강의 소결 거동에 관한 연구)

  • 임태환
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.42-49
    • /
    • 2000
  • Densificationbehavior of conventional austenitic stainless steel powder compacts was studied by comparing the relative density of sintered compact(Ds)with that of green compacts(Dg)prepared with various catbon contents and P/M process. Dg of 304and 316 powders by warm compaction under pressure of 686 MPa at heating temperature of powder(553K) and dies (573K) were 80% and 81%, repectively, whichwere 2 and 3% higher than those of conventional green compacts at the same pressure. Ds of 304 compacts sintered at 1373K in H2 gas has the same value of 84% max. regardless of compacting temperature, and Ds of 316 compacts at the same sintering conditions were 80% by conventional compaction and 83% by warm compaction. Oxygen contents of 304 and 316 sintered compacts were increased 1.43∼2.94% and 0.010∼0.921% higher than those of raw powders and warm green compacts, respectively. In other case, Ds of 316 compacts sintered at 1573K in vacuum had the same value of 86%max. And Ds of 316 compacts at the same sintering conditions were 83% and 86% by conventional and warm compaction, respectively. Oxygen contents of 304 sintered compacts were 0.321% and 0.360%, and in case of 316, they were 0.419% and 0.182% by the respective compating condition. With carbon additions in the range 0.1∼0.6% Ds increased to the extent of 86∼89% in 304 sintered compacts, and to 82∼84% and 85∼87% in 316 according to different two compacting peocesses compared to those of sintered compacts without carbon addition.

  • PDF

Fabrication of Composite Filler Metal by Melt Infiltration (용탕 침투법을 이용한 복합 삽입 금속의 제조)

  • Park, Heung-Il;Kim, Ji-Tae;Kim, Woo-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.244-250
    • /
    • 2003
  • The aim of this study is fabricating of composite filler metal (CFM) by a combination of selective laser sintering (SLS) of stainless steel powders (RapidSteel $2.0^{TM}$ and liquid phase infiltration of Ag-28 wt.%Cu alloy. Porous stainless steel body with inter-connected pore channels was fabricated by SLS, binder decomposing and densification processes. By the direct contact infiltration, the narrow inter-particle channels of the porous body were completely filled with the Ag-28 wt.%Cu alloy infiltrant. During infiltration, the dissolved elements of Fe, Ni and Cr from the porous body were solved into copper solid solution phases, which consist of eutectic structure of composite metal matrix. The S10C/CFM/S10C joints, which have narrow clearance gaps between them up to 10 micrometers, were joined successfully by self-feeding of filler metal from the matrix of CFM. The CFM kept its original thickness and microstructure after brazing. The tensile strength of brazed specimen was higher than 30 kgf/$mm^2$ and showed a typical ductile fracture mode in the CFM.

Effect of Additives on the Densification and Electrical Properties of Ce0.8Gd0.2O2-δ Ceramics (Ceria의 소결과 전기전도도에 미치는 첨가제의 영향)

  • Yoo, Kyung-Bin;Oh, Eun-Ju;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.816-820
    • /
    • 2005
  • The doped-ceria is a strong candidate material for an intermediate temperature SOFC. However, the mechanical strength and the magnitude of electrical conductivity need to be increased at low sintering temperature. In this study, to improve both properties, $1at\% $ of Mg, Ca, Cr, Fe, Co, Ni, Cu, Ga, and Zr were added to the GDC20 ($20at\%$ Gd-doped Ceria) and sintered at $1350^{\circ}C$ that is $250^{\circ}C$ lower than $1600^{\circ}C$. With addition, the relative density of the sintered sample increased. Fe, Co, Ni, Cu, Ga doped-GDC20 showed high relative density over $92\%$. Among them, Ga doped-GDC20 showed the most improved sinterability. The conductivity of doped­GDC20 increased by $\~10$ times at $300\~700^{\circ}C$.

Synthesis of Nanocrystalline Ceria for IT-SOFC by Glycine Nitrate Combustion Process (연소합성을 이용한 저온형 고체산화물 연료전지용 나노구조 세리아계 전해질 제조)

  • Jo, Seung-Hwan;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.821-826
    • /
    • 2005
  • Gadolinia-doped ceria nanopowder was prepared by glycine-nitrate combustion method with different glycine/nitrate mixing ratio. The characteristics of the synthesized powder were investigated by X-ray diffraction method, transmission electron microscopy, thermal gravity, differential thermal analysis and thermo-mechanical analysis. The smallest powder was obtained with glycine/nitrate ratio 1.00 and the lowest organic and water vapor contained powder was made with glycine/nitrate ratio 1.75. According to dilatometry, fast densification was occurred around $1000^{\circ}C$ and shows full density over $1300^{\circ}C$. Finally near-fully dense ceria electrolyte was fabricated with conventional sintering technique. Glycine-nitrate process yields fine nanopowders which enable low temperature sintering and fabrication of fully dense and nanostructured oxide electrolyte.