• 제목/요약/키워드: Sintering aid

검색결과 100건 처리시간 0.031초

NiO-Doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZr$_3$-O세라믹스의 전기 및 기계적 특성에 관한 연구 (Electrical and mechanical properties of NiO doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZrO$_3$-ceramics)

  • 나은상;김윤호;최성철
    • 한국결정성장학회지
    • /
    • 제10권3호
    • /
    • pp.245-251
    • /
    • 2000
  • Pb($(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$세라믹스에서 NiO첨가에 따른 유전, 압전 및 기계적 특성의 변화를 연구하였다. Columbite precursor법을 사용하여 분말을 제조 후 공기중에서 $1100^{\circ}C$~$1250^{\circ}C$의 온도로 2시간 소결하여 시편을 제조하였다. $1150^{\circ}C$이하 온도에서 소결한 시편에서는 NiO를 1 mol% 첨가시까지 유전상수와 압전상수가 증가하였으나 첨가량이 그 이상 증가함에 따라 감소하였는데 이는 NiO가 소결조제 역할을 한 것으로 보여진다. 그러나 $1200^{\circ}C$ 이상 온도에서 소결한 시편에서는 NiO 첨가량 증가에 따라 유전상수와 전기기계결합계수가 감소하였으며, 기계적품질계수는 증가하였다. 경도 및 파괴인성은 1 mol% 첨가시 최대 값을 보이다가 그 이후 감소하였다. NiO 첨가 PNN-PT-PZ 세라믹스의 전기적 및 기계적 특성은 결정립크기, 소결밀도 및 2차상의 양 등의 미세구조적 요소와 긴밀한 관계가 있음을 보여준다.

  • PDF

분무 배소법에 의한 복합산화물의 제조공정 및 Mn-Zn ferrite의 자기 특성에 관한연구 (Study on the Manufacturing Process of Complex Oxide by Co-Roasting Process and Magnetic Properties Mn-Zn Ferrite)

  • 유재근;이경익;이성수
    • 자원리싸이클링
    • /
    • 제8권4호
    • /
    • pp.45-56
    • /
    • 1999
  • 본 연구의 목적은 불순물들을 다량 함유한 mill scale과 ferro-Mn을 정제과정을 거쳐 불순물들의 함량을 100 ppm 이하로 감소시킨 후 이들을 원료로 사용하여 Mn-Zn ferrite 원료분말을 기존의 고상반응법이 아닌 분무배소 방법에 의해 제조하는데 있다. 이를 위하여 본 연구에서는 정제된 원료용액을 분무배소시킴으로써 고상의 미세한 복합산화물 분말을 형성시키며, 생성된 분말을 효율적으로 포집할 수 있을 뿐 아니라 유해 생성기체를 중화시킬 수 있는 분무배소로 system을 개발하였다. 또한 정제된 원료 용액을 본 연구에서 개발된 분무배소로 내로 투입시킴으로써 Mn-ferrite 및 $Fe_{2}O_{3}$$Mn_{2}O_{3}$의 복합산화물 분말을 제조하였으며, 이때 각각의 조건 하에서 생성된 분말들에 대해 조성, 비표면적 및 입도 분포 등의 물리적, 화학적 특성을 조사하였다. 분무 배소법에 의해 생성된 원료분말에 ZnO 및 기타 첨가제를 정해진 조성으로 혼합시킨 후 성형 및 엄격하게 제어된 소결과정에 의해 Mn-Zn ferrite core를 제조하였다. 또한 제조된 core에 대하여 손실값, 초투자율, 잔류자속밀도, 항자력 및 포화자속밀도의 자기적 특성을 측정하였으며, 이 결과들을 바탕으로 Mn-Zn ferrite 원료 분말을 제조하기 위한 분무배소방법의 타당성을 확인하였다.

  • PDF

MgO doping 및 annealing이 AlN-Y2O3 세라믹스의 고온전기저항에 미치는 영향 (MgO doping and annealing effect on high temperature electrical resistivity of AlN-Y2O3 ceramics)

  • 유동수;이성민;황광택;김종영;심우영
    • 한국결정성장학회지
    • /
    • 제28권6호
    • /
    • pp.235-242
    • /
    • 2018
  • $Y_2O_3$를 소결조제로 사용한 질화알루미나(AlN)에 다양한 소결조건과 MgO의 도핑이 고온전기전도도의 특성에 대해 미치는 영향에 대해 연구하였다. MgO를 도핑 하였을 때, 2차상으로 스피넬과 페로브스카이트 상이 생성되었고, 이는 전기적 특성에 영향을 끼쳤다. 고온 임피던스를 분석한 결과 MgO의 도핑은 AlN 입내의 활성화 에너지와 전기전도도의 감소를 보이는 반면에, 입계의 경우에는 활성화 에너지와 전기전도도의 증가를 보였다. 이는 저항이 높은 비정질의 액상이 입계에 형성되거나, Mg의 석출에 의하여 쇼트키 장벽이 높아졌기 때문으로 예상된다. MgO가 도핑된 AlN을 어닐링 한 경우에는 어닐링 하지 않은 경우에 비하여, 활성화 에너지와 전기전도도가 더욱 증가하는 것을 볼 수 있었다. 이러한 결과는 $1500^{\circ}C$에서 어닐링을 통하여 미세구조분석에서 보이는 바와 같이 Mg 이온이 입계에서 입내로 확산된 때문으로 예상된다.

Physical and Microwave Dielectric Properties of the MgO-SiO2 System

  • Yeon, Deuk-Ho;Han, Chan-Su;Key, Sung-Hoon;Kim, Hyo-Eun;Kang, Jong-Yun;Cho, Yong-Soo
    • 한국재료학회지
    • /
    • 제19권10호
    • /
    • pp.550-554
    • /
    • 2009
  • Unreported dielectrics based on the binary system of MgO-SiO$_2$ were investigated as potential candidates for microwave dielectric applications, particularly those demanding a high fired density and high quality factors. Extensive dielectric compositions having different molar ratios of MgO to SiO$_2$, such as 2:1, 3:1, 4:1, and 5:1, were prepared by conventional solid state reactions between MgO and SiO$_2$. 1 mol% of V$_2$O$_5$ was added to aid sintering for improved densification. The dielectric compositions were found to consist of two distinguishable phases of Mg$_2$SiO$_4$ and MgO beyond the 2:1 compositional ratio, which determined the final physical and dielectric properties of the corresponding composite samples. The increase of the ratio of MgO to SiO$_2$ tended to improve fired density and quality factor (Q) without increasing grain size. As a promising composition, the 5MgO.SiO$_2$ sample sintered at 1400 $^{\circ}C$ exhibited a low dielectric constant of 7.9 and a high Q $\times$ f (frequency) value of $\sim$99,600 at 13.7 GHz.

AlN/hBN 복합재료의 기계적 성질 (Mechanical Properties of AlN/hBN Ceramic Composites)

  • 이재형;안현욱;윤영식;조명우;조원승
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.582-587
    • /
    • 2005
  • AlN-BN ceramic composites were fabricated and their mechanical properties were investigated. The relative density of hot-pressed composites decreased with increasing BN content, but over $99\%$ could be obtained with 30 $vol\%$ BN in AlN. YAG was formed in the composites and monolithic AlN as a second phase by the reaction between $Y_2O_3$, added as sintering aid, and $Al_2O_3$. As expected, Vickers hardness and Young's modulus decreased with increasing BN content. The three-point flexural strength also showed similar behavior decreasing from 500 MPa of monolith down to 250 MPa by the addition 30 $vol\%$ BN. However, interestingly, the standard deviation of the strength values decreased significantly as BN was added to AlN. As a result, the Weibull modulus of the AlN-30 $vol\% BN composite was 21.3, which was extremely high. Fractography and crack path studies revealed that BN platelets induced grain pull-out and crack bridging in a bigger scale during crack propagation. Consequently, fracture toughness increased as more BN was added, reaching 4.5 $MPa\sqrt{m}$ at 40 $vol\%$ BN.

Minimizing the Water Leaching of Zincborate Glass by La2O3 Addition for LTCC Applications

  • Hong, Seung-Hyuk;Jung, Eun-Hee;Oh, Chang-Yong;Kim, Shin;Shin, Hyun-Ho
    • 한국세라믹학회지
    • /
    • 제45권3호
    • /
    • pp.157-160
    • /
    • 2008
  • A series of $La_2O_3$-added zincborosilicate glasses was fabricated by systematically varying $La_2O_3$ addition up to 15mol% under the constraint of a ZnO:$B_2O_3$ ratio of 1:2. The degree of water leaching after ball milling of the prepared glasses in water medium was relatively quantified by the change in zinc peak intensity in energy dispersive spectroscopy. 8mol% of $La_2O_3$ was the most efficient addition in inhibiting the glass leaching by water. The role of $La_2O_3$ in inhibiting the leaching was explained in terms of change of structural units in the glass network. When the optimum 8mol% $La_2O_3$-added ZnO-$B_2O_3$ glass was used as sintering aid for $Al_2O_3$, the fabricated alumina-glass composite at $875^{\circ}C$ demonstrated dielectric constant of 6.11 and quality factor of 15470 GHz, indicating the potential of leaching-minimized $La_2O_3-ZnO-B_2O_3$ glass for application to low temperature co-firing ceramic technology.

SiC-$TiB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 가압(加壓)의 영향(影響) (Effect of Pressure on Properties of the SiC-$TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;서재호;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1228-1229
    • /
    • 2008
  • The composites were fabricated 61[vol.%] ${\beta}$-SiC and 39[vol.%] $TiB_2$ powders with the liquid forming additives of 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressure or pressureless annealing at 1,650[$^{\circ}C$] for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ $YAG(Al_5Y_3O_{12})$. The relative density, the flexural strength and the Young's modulus showed the highest value of 88.32[%], 136.43[MPa] and 52.82[GPa] for pressure annealed SiC-$TiB_2$ composites at room temperature. The electrical resistivity showed the lowest value of 0.0162[${\Omega}{\cdot}cm$] for pressure annealed SiC-$TiB_2$ composite at 25[$^{\circ}C$]. The electrical resistivity of the pressure annealed SiC-$TiB_2$ composite was positive temperature coefficient resistance (PTCR) but the electrical resistivity of the pressureless annealed SiC-$TiB_2$ composites was negative temperature coefficient resistance(NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

Microstructure and Mechanical Properties of Hardmaterials

  • Hayashi, Koji
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1994년도 춘계학술대회강연 및 발표대회 강연및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1994
  • Har dmaterials such as cemented carbides with or without coated layer, cermets, ceramics and diamond or c-BN high pressure sintered compact are used for cutting tools, wear -resistant parts, rock drilling bits and/or high pressure vessels. These hardmaterials contain not only hard phase, but also second consituent as the element for forming ductile phase and/or sintering aid, and the mechanical properties of each material depend on (1) the amount of the second constituent as well as (2) the grain size of the hard phase. The hardness of each material mainly depends on these two factors. The fracture strength, however, largely depends on other microstructur a1 factors as well as the above two factors. For all hardmaterials, the fracture strength is consider ably affected by (3) the size of microstructur a1 defect which acts as the fracture source. In cemented carbides, the following factors which are generated mainly due to the addition of the second constituent are also important; (4) the variation of the carbon content in the normal phase region free from V-phase and graphite phase, (5) the precipitation of $Co_3$ during heating at about $800^{\circ}C$,(6) the domain size of binder phase, and (7) the formation of ${\beta}$-free layer or Co-rich layer near the surface of sintered compacts. For cemented carbides coated with thin hard substance, the important factors are as follows; (8) the kind of coated substance, (9) the formation of ${\eta}$-phase layer at the interface between coated layer and substrate, (10) the type of residual stress (tension or compression) in the coated layer which depends on the kind of coating method (CVD or PVD), and (11) the properties of the substrate, and (12) the combination, coherency and periodicity of multi-layers. In the lecture, the details of these factors and their effect on the strength will be explained.

  • PDF

자기 통전식 SiC세라믹 발열체 개발을 위한 기초 특성 연구 (Study of Basic Properties to Develope SiC Ceramic Heater by Self-Charge with Electricity)

  • 신용덕;고태헌;주진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.124-125
    • /
    • 2007
  • The composites were fabricated $\beta$-SiC and $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at $1,650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[MPa], 54.60 [GPa] and 2.84[GPa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. The electrical resistivity showed the lowest value of 0.012[${\Omega}{\cdot}cm$] for 16[wt%] at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

치아회분(齒牙灰粉)과 도재(陶材) 복합(複合) 매식체(埋植體)에 관(關)한 광학현미경(光學顯微鏡) 급(及) 주사전자현미경적(走査電子顯微鏡的) 연구(硏究) (A Light and Scanning Electron Microscopic Study on the Implant of Tooth Ash-Porcelain Mixture)

  • 조영학
    • 대한치과보철학회지
    • /
    • 제22권1호
    • /
    • pp.33-50
    • /
    • 1984
  • The purpose of this study was to investigate whether the ashed tooth powder is utilized as an alternative material of the implant to recovery the bony defect. For this purpose its biocompatibility was evaluated comparing to the synthetic calcium phosphate compounds, such as Syntograft and Calcitite, as well as the vacuum firing porcelain (Ceramco Inc.) which is anticipated to use as a matrix to aid sintering. Bony defects to exposure the bone marrow, $3{\times}5$ mm in size, were created in the right and left tibias of fifteen rabbits, and then the ashed tooth powder at $950^{\circ}C$, the porcelain powder, Syhtograft and Calcitite were inserted in the defects of twelve rabbits of the experimental group and the blood clot only was filled in the defects of three rabbits of the control group. The experimental and control rabbits were sacrificed at 1st, 2nd 3rd week after implantation and the histologic examination was performed. The ashed tooth powder in order to make the needed form of the implant was molded using the cylindrical mold 1 cm high, 1 cm in diameter under the pressure of $1000kg/cm^2$ and the ashed tooth powder was sintered at $1100^{\circ}C$ for 1 hour and the mixture of the porcelain powder and the ashed tooth powder at the weight ratio of 7:3, 6:4, 5:5, 4:6 were molded in the same manner and were sintered at $925^{\circ}C$. From this sintered material, square shaped implants were prepared in the dimension of $2{\times}4{\times}6mm$. The prepared implants were surgically placed in the subperiosteum of lateral surfaces of the right and left mandibular bodies. The dogs were sacrificed at 4 weeks, and then the specimens were examined using the light and scanning electron microscopes. The results of this study were obtained as follows: 1. Any inflammatory response was not noted after implanting of the ashed tooth powder, Syntograft, Calcitite and the porcelain powder during the whole experimental period after implantation. 2. Induction of the new bone formation was significantly shown in the ashed tooth powder, Syntograft and Calcitite. 3. The more the porcelain powder was contained in the implants, the more the porosity was and the bigger the pore size was under the scanning electron microscope. And there was ingrowing of the fibrous connective and the osteoid tissue. 4. The osteoid tissues were found to be directly fused to the implant of the ashed tooth powder, and the mixture implant of the porcelain powder and the ashed tooth powder at the weight ratio of 4:6 under the light and scanning electron microscopes.

  • PDF