• Title/Summary/Keyword: Sintering agent

Search Result 80, Processing Time 0.019 seconds

Research on Synthesis and Sintering Behavior of Nano-sized (Pb, La)TiO3 Powders Using Mechano Chemical Process (기계화학공정에 의한 (Pb, La)TiO3 나노 분말의 합성 및 소결 특성 연구)

  • Lee, Young-In;Goo, Yong-Sung;Lee, Jong-Sik;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below $1050^{\circ}C$ by using $Bi_2O_3$ powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and $1150^{\circ}C$, the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding $Bi_2O_3$ and the specimen with the relative densitiy over 96% were fabricated below $1050^{\circ}C$ when 2 wt% of $Bi_2O_3$ was added.

Microstructure and Mechanical Properties of Nanostructured Aluminum Consolidated by SPS

  • Zadra, Mario;Casari, Francesco;Molinari, Alberto
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.360-361
    • /
    • 2006
  • Nanostructured aluminum powders were obtained by means of planetary ball milling with methanol as the Process Control Agent (PCA). The behavior, during milling, was considered measuring the microhardness and grain size at different milling times. Bulk near-full density samples were sintered using the Spark Plasma Sintering technology with different schedules: temperature of $500^{\circ}C$ and $550^{\circ}C$, pressure of 30 MPa and 60 MPa and different modes of applying the pressure were changed in order to understand the behavior during sintering. All the samples retained their nanostructure with an increase of the grain size from about 46 up to 70-90 nm.

  • PDF

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

A study on Fabrication of Harden Carbon for Electrical Application (전기재료장 경질탄소 제조에 관한 연구)

  • 지명학;임대영;김종옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.198-201
    • /
    • 1995
  • Carbons are the materials which are known to be usable at highest temperature in existing materials and are being increased their mechanical Properties to 2000$^{\circ}C$. They have many advantageous characteristics such as electrical and thereat conductivity. But, inspire of their properties, this materials have covalant bonding that strong1y link their atoms. the covalant bondings are too strong to occur atomic diffusions or shirinkages during the sintering. because of this sintering mechanism, carbon materials must be produced by using some binders. To obtain a good carton material, it is important that the function of binders. And to obtain a good binder, it reqired the additive which can improve the properties of the binder, so called curing agent. In this study, we make a curing agent that can improve the properties of binders to evaluate the yield of carbon from binders and to shirink the substrate. and compared the carbon materials treated with the binder containing the curing agent to that treated with common binder.

  • PDF

A Study on the Forsterite Porcelain as a High Frequency Insulator(II) (Influence of $BaCO_3$, excess MgO on the Properties of Forsterite Porcelain) (고주파용 절록재료로서의 Forsterite 자기에 관한 연구(II) (Forsterite 자기 성질에 미치는 과잉 Mg 성분과 $BaCO_3$의 영향))

  • 이웅상;황성연
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.3
    • /
    • pp.205-214
    • /
    • 1982
  • The method of lowering the sintering temperature and enlarging the range of sintering temperature in the manufacture of forsterite porcelain as a high frequency insulator was investigated. The four kinds of forsterite chamotte were calcinated at $1400^{\circ}C$. The forsterite bodies produced by adding $BaCO_3$ as a flux and 5% Kaolin as a bonding agent were heated in the range of sintering temperature. Sintering temperature tended to increase almost straightly as MgO exceded without $BaCO_3$. The range of sintering tem was at least $140^{\circ}C$. Specimens of MF-2-0, MF-2-A had superior mechanical strength and dielectric properties. The growing of the forsterite crystal was restricted and thus their grain size became fine and also the amount of crystal formation tended to decrease rapidly as $BaCO_3$ increased excessively.

  • PDF

Effect of Co2O3 addition on liquid phase sintering behavior and mechanical properties of commercial alumina (Co2O3 첨가가 알루미나의 액상소결 및 기계적 물성에 미치는 영향)

  • Oh, Bok Hyun;Yoon, Tae-Gyu;Kong, Heon;Kim, Nam-Il;Lee, Sang-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.150-155
    • /
    • 2020
  • Alumina (Al2O3) is mainly used as a structural ceramic material and to have good mechanical properties requires a dense microstructure. In commercial fabrication, the liquid phase sintering process is adjusted to reduce the sintering temperature of alumina. In this study, the effect of added amounts of cobalt oxide as a coloring agent on the microstructure and mechanical properties was investigated in the CaO-SiO2-MgO-system liquid phase sintering of 92 % alumina at various sintering temperatures. When 11 wt% Co2O3 was added, a rearrangement of alumina particles, which is the main densification step in liquid phase sintering, occurred from a sintering temperature of 1200℃. Solution re-precipitation and coalescence steps followed from 1300℃ with the grain growth of alumina particles. The addition of excess Co2O3 and sintering temperatures above 1400℃ resulted in a decrease in sintered density and Vickers hardness, because of the low viscosity of the liquid phase. In 92 % alumina with the addition of 11 wt% Co2O3, a sintered density and Vickers hardness of 3.86 g/㎤ and 12.32 GPa, respectively, were obtained at a sintering temperature of 1350℃.

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.472-478
    • /
    • 2006
  • The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.

Microwave dielectric properties according to the additions of NiO to $(Zr_{0.65}, Sn_{0.35})Ti_{1.04}O_{4.04}$ ceramics ($(Zr_{0.65}, Sn_{0.35})Ti_{1.04}O_{4.04}$세라믹스의 NiO첨가에 따른 고주파 유전 특성)

  • 윤중락;권정열;이헌용;김경용
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.594-600
    • /
    • 1995
  • Dielectric properties at microwave frequencies of ($Zr_{0.65}$, $Sn_{0.35}$) $Ti_{1.04}$ $O_{4.04}$ ceramics with additives, NiO as an agent to improve dielectric properties and $B_{2}$ $O_{3}$ as a firing agent were investigated. When 0.5 - 1.5 wt% of NiO is add, the grain growth is inhibited and the shape of the grain is uniformed, Dielectric constant(Fr) and bulk density are increased with raising amount of NiO at sintering temperature of 1330 - 1360.deg. C, but the temperature coefficient of resonant frquency(.epsilon.$_{r}$) decreased gradually as the NiO content increased. The value of Qx $f_{o}$ was increased as the amount of NiO was increased in the range of 0.5 to 1.0 wt% and the Qx $f_{o}$, was decreased slightly with raising sintering temperature. With NiO of 1.0 wt% and at sintering temperature of 1360.deg. C, this ceramics was found to have excellent microwave properties of .epsilon.$_{r}$=37.8, Qx $f_{o}$ = 48.600 and .tau.$_{f}$ = 7 ppm/.deg. C.C.. C.. C.C.. C.. C.

  • PDF

Effeet of Al2O3, MgO and SiO2 on Sintering and Hydration Behaviors of CaO Ceramics

  • Kim, Do-Kyung;Cho, Churl-Hee;Goo, Bong-Jin;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.528-534
    • /
    • 2002
  • CaO ceramics were prepared by conventional sintering process and their hydration behaviors were evaluated by measuring weight increment on saturated water vapor pressure at ambient temperature. CaCO$_3$ and limestone were used as CaO source materials and $Al_2$O$_3$, MgO and SiO$_2$ were added as sintering agents. $Al_2$O$_3$ was a liquid phase sintering agent to increase densification and grain growth rates, whereas MgO and SiO$_2$, densification and grain growth inhibitors. Regardless of composition, all of the prepared CaO ceramics showed the improved hydration resistance as bulk density increased. Especially, when bulk density was more than 3.0 g/㎤, there was no weight increment after 120 h of hydration. Therefore, to decrease contact area between CaO and water vapor by increasing bulk density with the $Al_2$O$_3$ sintering additive was effective for the improvement of CaO hydration resistance.

Development of Ultra-high Capacitance MLCC through Low Temperature Sintering (저온소결을 통한 초고용량 MLCC 개발)

  • Sohn, Sung-Bum;Kim, Hyo-Sub;Song, Soon-Mo;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.146-154
    • /
    • 2009
  • It is necessary to minimize the thickness of Ni inner electrode layer and to improve the coverage of inner electrode, for the purpose of developing the ultra high-capacity multi layered ceramic capacitor (MLCC). Thus, low temperature sintering of dielectric $BaTiO_3$ ceramic should be precedently investigated. In this work, the relationship between dielectric properties of MLCC and batch condition such as mixing and milling methods was investigated in the $BaTiO_3$(BT)-Dy-Mg-Ba system with borosilicate glass as a sintering agent. In addition, several chip properties of MLCC manufactured by low temperature sintering were compared with conventionally manufactured MLCC. It was found that low temperature sintered MLCC showed better DC-bias property and lower aging rate. It was also confirmed that the thickness of Ni inner electrode layer became thinner and the coverage of inner electrode was improved through low temperature sintering.