• Title/Summary/Keyword: Sintering Method

Search Result 1,231, Processing Time 0.024 seconds

Comparison of fracture strength and color of zirconia copings according to multi-layer zirconia blocks and sintering method (다층 지르코니아 블록 종류와 소결방법에 따른 지르코니아 코핑의 파절강도와 색조 비교)

  • Kang, Jae-Min;Kim, Won-Young;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.195-201
    • /
    • 2019
  • Purpose: This study was investigated the effect of multilayer zirconia block type and sintering method on fracture strength, micro structure and color of zirconia copings. Methods: Three kinds of multi-layered zirconia blocks were used to identify the effects of the kinds of multi-layered zirconia blocks and sintering methods on fracture strength and color reproducibility of zirconia copings. 60 Zirconia copings were fabricated and fracture strength, micro structure and color reproducibility were compared and evaluated. Results: In all the blocks, the CS group, which refers to the general sintering method had higher fracture strength of zirconia copings than the MS group that refers to the microwave sintering method(MCS/MMS; 2,107.5N/1,930.4N, DCS/DMS; 917.0N/879.1N, UCS/UMS; 2,256.9/2,050.7N). In relation to CIE $L^*$, $a^*$, $b^*$ values of zirconia copings depending on the kinds of multi-layered zirconia blocks and sintering methods, the MS group using the microwave sintering method had lower brightness and chroma than the CS group using the general sintering method. Conclusion: In all the blocks, the CS group(general sintering) had higher fracture strength of zirconia copings than the MS group(microwave sintering). In relation to CIE $L^*$, $a^*$, $b^*$ values of zirconia copings depending on the kinds of multilayered zirconia blocks and sintering methods, the MS group using the microwave sintering method had lower brightness and chroma than the CS group using the general sintering method.

Characterization of artificial aggregates fabricated with direct sintering method (직화소성법으로 제조된 인공골재의 특성 분석)

  • Kim, Kang-Duk;Kang, Seun-Ggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • The bulk density, water absorption and microstructure of the artificial aggregates were controlled as a function of sintering temperature (1100 and $1200^{\circ}C$) and time (10~60 min) in the fabrication process of the artificial aggregates by the direct sintering process using dredged soil, the inorganic wastes. Also, the physical properties of the artificial aggregates fabricated according to the different sintering methods such as the direct sintering method used in this study and the increasing temperature sintering method used in the previous report, were compared and analysed. The bulk density of aggregates sintered at $1200^{\circ}C$ by the direct sintering method showed below 1.0, and the thickness of a shell and the pore size of the black core were increased with sintering temperature. Also, in the same sintering temperature, the area of black core was decreased, the thickness of shell was increased and the water absorption was decreased with sintering time. The black core of artificial aggregates of bulk density below 1.0 had the similar microstructure, regardless of sintering methods. In contrast, the shell of aggregates fabricated by the increasing temperature sintering method showed more dense microstructure than that by direct sintering method, hence the water absorption of aggregate sintered using direct sintering was relatively high. Thus, the direct sintering method is suitable for fabrication of artificial aggregates in ceramic carriers or absorbents applications.

Computer aided simulation of spark plasma sintering process (Part 1 : formulation) (스파크 플라즈마 소결공정의 전산모사(1부 : 수식화))

  • Keum Y.T.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2006
  • Spark plasma sintering processes have been rapidly introduced recently to improve the quality and productivity of ceramic products and to solve the problem of environmental pollutions. Sintering temperatures and pressing pressures in the spark plasma sintering process are known to be the important factors highly affecting the quality of the ceramics. In this research, in order to see the effects of sintering temperatures and pressing pressures on the grain growth during the spark plasma sintering process of $Al_2O_3$ the grain growth processes associated with sintering temperatures and pressing pressures are simulated by the Monte Carlo method (MCM) and the finite element method (FEM). In this Part 1, the formulations for the simulation, which is the theoretical background of Part 2, are introduced.

Optical properties of ZnS ceramics by hot press stack sintering process (고온 가압 적층 소결에 의한 황화아연 세라믹스의 광학성 특성)

  • Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.148-153
    • /
    • 2021
  • During the manufacture of a ZnS lens with excellent transmittance in the mid-infrared region (3-5 ㎛) by the hot-press process, a single-layer sintering method is used in which one lens is manufactured in one process. Additional research is required to improve this single-layer sintering method because of its low manufacturing efficiency. To solve this problem, the variation in optical properties of ZnS lenses with change in sintering temperature was investigated by introducing a Stack sintering method that can sinter multiple lenses simultaneously. A carbon paper was placed between the molded lenses and sintered into five layers. The average permeability of 67% at medium infrared wavelengths of 3-5 ㎛ was excellent under the following sintering conditions: pressure of 50 MPa and temperature of 850℃. This value is 1% less than the average permeability in the case of single-layer sintering of the ZnS lens. It was confirmed that the stack sintering method developed in this study can be used to manufacture a large number of lenses with excellent characteristics in a single process.

Densification of Cu-50%Cr Powder Compacts and Properties of the Sintered Compacts (Cu-50%Cr 분말성형체의 치밀화 및 소결체 물성)

  • 김미진;정재필;도정만;박종구;홍경태
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.218-227
    • /
    • 2000
  • It is well known that the Cu-Cr alloys are very difficult to be made by conventional sintering methods. This difficulty originates both from limited solubility of Cr in the Cu matrix and from limited sintering temperature due to high vapor pressures of Cr and Cu components at the high temperature. Densification of Cu-50%Cr Powder compacts by conventional Powder metallurgy Process has been studied. Three kinds of sintering methods were tested in order to obtain high-density sintered compacts. Completely densified Cu-Cr compacts could be obtained neither by solid state sintering method nor by liquid phase sintering method. Both low degree of shrinkage and evolution of large pores in the Cu matrix during the solid state sintering are attributed to the anchoring effect of large Cr particles, which inhibits homogeneous densification of Cu matrix and induces pore generation in the Cu matrix. In addition, the effect of undiffusible gas coming from the reduction of Cu-oxide and Cr-oxide was observed during liquid phase sintering. A two-step sintering method, solid state sintering followed by liquid phase sintering, was proved to have beneficial effect on the fabrication of high-dendsity Cu-Cr sintered compacts. The sintered compacts have properties similar to those of commercial products.

  • PDF

Comparative clinical study of the marginal discrepancy of fixed dental prosthesis fabricated by the milling-sintering method using a presintered alloy

  • Kim, Mijoo;Kim, Jaewon;Mai, Hang-Nga;Kwon, Tae-Yub;Choi, Yong-Do;Lee, Cheong-Hee;Lee, Du-Hyeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.280-285
    • /
    • 2019
  • PURPOSE. The present study was designed to examine the clinical fit of fixed dental prosthesis fabricated by the milling-sintering method using a presintered cobalt-chromium alloy. MATERIALS AND METHODS. Two single metal-ceramic crowns were fabricated via milling-sintering method and casting method in each of the twelve consecutive patients who required an implant-supported fixed prosthesis. In the milling-sintering method, the prosthetic coping was designed in computer software, and the design was converted to a non-precious alloy coping using milling and post-sintering process. In the casting method, the conventional manual fabrication process was applied. The absolute marginal discrepancy of the prostheses was evaluated intraorally using the triple-scan technique. Statistical analysis was conducted using Mann-Whitney U test (${\alpha}=.05$). RESULTS. Eight patients (66.7%) showed a lower marginal discrepancy of the prostheses made using the milling-sintering method than that of the prosthesis made by the casting method. Statistically, the misfit of the prosthesis fabricated using the milling-sintering method was not significantly different from that fabricated using the casting method (P=.782). There was no tendency between the amount of marginal discrepancy and the measurement point. CONCLUSION. The overall marginal fit of prosthesis fabricated by milling-sintering using a presintered alloy was comparable to that of the prosthesis fabricated by the conventional casting method in clinical use.

A Study of Rapid Tooling of Porous Metal Mold (통기성 금형의 쾌속제작에 관한 연구)

  • 김경래;정성일;정해도;이석우;최헌종;박영진;박장식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.91-98
    • /
    • 2003
  • Removal of gas in a mold has been a big problem in pressing mold or in injection mold. Air vent has been used to solve the problem, but it has weak points such as the increased cost, the increased number of process, and vent marks on the surface of a product. In this study, the sintering method and rapid tooling method are used for making porous metal mold. Porous metal mold has many open pores, which are very small. When porous metal mold is used for pressing mold or injection mold, all process would be made short, produce cost would be down, and vent marks would be not leaved on the surface of a product. Characteristic of porous material varies from sintering conditions, which are the length of sintering time, sintering temperature and sintering atmosphere etc. This study will find optimized sintering condition for the porous metal mold.

Rapid Tooling of Porous Metal Mold using Ceramic Mold (세라믹 형을 이용한 통기성 금형제작)

  • 김경래;정성일;정해도;이석우;최헌종;박영진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.308-311
    • /
    • 2002
  • Removal of gas in a mold has been a big problem in pressing mold or in injection mold. Air vent has been used to solve the problem, but it has weak points such as the Increased cost, the increased number of process. and vent marks on the surface of a product. In this study, the sintering method and rapid tooling method are used for making porous metal mold. Porous metal mold has many open pores, which are very small. When porous metal mold is used for pressing mold or injection mold, all process would be made short, produce cost would be down, and vent marks would be not leaved on the surface of a product. Characteristic of Porous material varies from sintering conditions, which are the length of sintering time, sintering temperature and sintering atmosphere etc. This study will find optimized sintering condition for the porous metal mold.

  • PDF

Comparative Study of Properties of Dental Zirconia According to Microwave Sintering Method (마이크로웨이브 소결방법에 따른 치과용 지르코니아의 물리적 특성)

  • Kim, Tae-Suk;Yu, Chin-Ho;Kim, Gi-Chul;Park, Won-Uk;Seo, Jung-Il;Hwang, Kyu-Hong
    • Journal of Technologic Dentistry
    • /
    • v.34 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • Purpose: Densification and mechanical properties of dental zirconia ceramics were evaluated by different sintering methods. Materials and Methods: Y-TZP zirconia block(Kavo $Everest^{(R)}$ ZS blank, Kavo dental GmbH, Bismarckring, Germany) was used in this study. Sintering were performed in heat sintering furnace and microwave sintering furnace, and then experimented and analyzed on a change in densification according to the sintering time, a change in densification according to thickness, flexural strength and micro-structure in zirconia specimens. Results: Microwave sintering was very effective in considerable mechanical properties such as flexural strength and bulk density was drastically increased than conventional electric heating method. It is also shown that microwave sintering time was faster and more economical than common method to be present in qualities which equal or exceed. Conclusion: It will be important to seek the accurate sintering condition of dental zirconia by microwave sintering method and the continuous research is necessary for the study of relationship between sintering methods and mechanical properties.

Low temperature sintering and dielectric properties of $Sr_2(Ta_{1-x}Nb_x)_2O_7$ ceramics by the flux method (용융염합성법에 의한 $Sr_2(Ta_{1-x}Nb_x)_2O_7$ 세라믹스의 저온소성과 유전특성)

  • 남효덕
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.158-164
    • /
    • 1995
  • Solid solutions Sr$_{2}$(Ta$_{1-x}$ Nb$_{x}$)$_{2}$O$_{7}$, (x=0.0-1.0), composed of strontium tantalate(Tc=-107.deg. C) and strontium-niobate(Tc=1342.deg. C) were prepared by the conventional mixed oxide method and the flux method(molten salt synthesis method). Phase relation, sintering temperature, grain-orientation and dielectric properties for sintered ceramic samples were investigated with different compositions. Both Curie temperature and dielectric constant at Curie temperature were increased, and sintering behavior and the degree of grain-orientation were improved with the increase of Nb content. The single phase Sr$_{2}$(Ta/sib 1-x/Nb$_{x}$)$_{2}$O$_{7}$ powder was synthesized by using the flux method at lower temperatures, and sintering temperature was also reduced by using the flux method-derived powder than using the mixed oxide-derived powder. Sintering characteristics and dielectric properties of the specimens prepared by the flux method were better than those derived through the conventional mixed oxide method.thod.hod.

  • PDF