• Title/Summary/Keyword: Sintered diamond tool

Search Result 21, Processing Time 0.026 seconds

Machining of Wc-Co alloys with diamond tool (다이아몬드공구에 의한 초경합금의 절삭)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.102-111
    • /
    • 1997
  • This paper deals with the machinability based on turning of WC-Co allows with the coated and the sintered diamond tools. The main conclusions obtained are as follows. (1) When machining WC-10%Co alloy, the flank wear of sintered diamond tool increases more largely with the increase of cutting speed in comparison with coated diamond tool. The tool wear decreases with the increase of the grain size and nose radius of sintered diamond tool. (2) When machining WC-20%Co alloy, the tool wear and cutting force decrease with the decrease of rake angle. Their exists a certain cutting speed range to exhibit the smallest tool wear in machining the WC-20%Co alloy, and this critical cutting speed becomes higher by 2 times in the case of coated diamond tool compared with sintered diamond tool. (3) The machinability becomes better with the increase of Co content. The effects of cutting speed and feed rate on the roughness of machined surface become smaller with the increase of Co content.

  • PDF

Machinability of Pre-sintered Alumina Ceramics (알루미나 세라믹 가소결재의 피삭성 -다이아몬드 및 CBN공구의 절삭 성능-)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.41-46
    • /
    • 1996
  • In this study, unsintered and pre-sintered low purity alumina ceramics were machined with various tools to clarify the machinability, optimum tool materials and optimum cutting conditions. The main conclusions obtained were as follows. (1)In the case of dry cutting, the sintered diamond and natural diamond tools exhibit better performance in machining of the ceramic pre-sintered at lower temperature, and the tool lives of both tools in machining the ceramics pre-sintered at high temperature becomes extremely short. (2)The performance of CBN tool becomes better in dry machining of the ceramics pre-sintered at higher temperature. (3)When the pre-sintered ceramics were wet machined with sintered diamond, the tool life becomes considerably long, and higher cutting speed can be used than in the case of the CBN and ceramic tools, the tool lives becomes shorter at wet cutting than at dry cutting, especially exhibiting extremely short tool life in wet cutting with ceramic tool.

  • PDF

Evaluation of Wet Machining Characteristics of the Presintered Low Purity Alumina with the Ceramic, CBN and Diamond Tools (저순도 알루미나 예비소결체의 절삭유제에 따른 세라믹, CBN, 다이아몬드공구의 가공 특성 평가)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.33-40
    • /
    • 2007
  • In this study, presintered and full sintered low purity alumina ceramics were machined with various tools to clarify the effect of cutting fluid in machinability. The main conclusions obtained were as follows. When the presintered ceramics were wet machined with sintered diamond tool, the tool wear becomes extremely large, and higher cutting speed can be used than in the case of full sintered ceramics. The productivity of wet cutting with the sintered diamond tool is much higher than that of dry cutting. In the case of the CBN and ceramic tools, the tool wear were smaller at wet cutting than at dry cutting, especially exhibiting considerably larger grooved tool wear in wet cutting with ceramic tool.

An Experimental Study on Cutting Characteristic of Ceramics (세라믹스의 절삭거동에 관한 실험적 연구)

  • 이길우;김순태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.420-426
    • /
    • 1993
  • The machinability of ceramics has been experimentally studied. The experiments were conducted on alumina cernmics of various purity, quartz, and cordierite using the sintered diamond tools and CBN tools. Tool wasre, surface roughness, and cutting resistence were measured and analysed. It was found that the workpieces could be machined with the diamond and CBN tools, but the sintered diamond tools were more efficient for the machining of the high strength ceramics. The machining of alumina ceramics with sintered diamond tools showed that (1) wet machining prolonged tool life comparing with dry machining, (2) workpiecewith higher purity had better surface roughness, (3) severe cutting conditions led to the chipping and fracture of tool and increase of the surface roughness and cutting resistance, (4) 20~40m/min of cutting speed, 0.01~0.02mm/rev of feed, and 0.1~0.2mm of cutting depth are suggested as proper cutting conditions for the high strength ceramics.

  • PDF

The Study of Laser Weldability of two different Metal, Carbon Steel and Sintered Materials, Depends on the Sintered Density (소결밀도에 따른 분말 소결금속과 탄소강의 이종금속 레이저 용접성 고찰)

  • Kim, Yong;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.8-14
    • /
    • 2008
  • Sintered specimen which used for a blade of diamond tool was manufactured in order to verify $CO_2$ laser weldability depend on sintered temperature. Five kind of specimen were prepared and the range of temperature is from $600^{\circ}C$ to $1000^{\circ}C$ at intervals of $100^{\circ}C$. As a result of the sintered density test, the porosity rate appeared in the range of $2.1%{\sim}21.4%$. After welding, the most segments had exceeds the minimum fracture stress (600MPa, The Standard Safety of Europe) at the welding strength test except on the sintered at $600^{\circ}C$. In case of the sintered at $700^{\circ}C$, even satisfied the safety allowable stress but cannot get the good quality for bead appearance because of humping defect. In the conclusion, we could know that it showed not only relatively soundness bead but also enough welding strength when the sintered blade of diamond tool is included less than 4% of porosity rate.

  • PDF

Measurement of Cohesion Force between Diamond and Matrix in CMP Pad Conditioner

  • Kang, Seung-Koo;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1128-1129
    • /
    • 2006
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond cohesion. Strong cohesion between diamond and metal matrix prevents macro scratch on the wafer during CMP Process. Typically the diamond tool has been manufactured by sintered, brazed and electro-plated methods. In this paper, some results will be reported of cohesion between diamond and metal matrix of the diamond tools prepared by three different manufacturing methods. The cohesion force of brazed diamond tool is found stronger than the others. This cohesion force is increased in reverse proportion to the contact area of diamond and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of Cr in metal matrix and C in diamond, which enhance the interfacial cohesion strength between diamonds and metal matrix.

  • PDF

저순도 알루미나 세라믹 가소결재의 피삭성

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.33-38
    • /
    • 1995
  • In this study, unsistered, pre-sintered and sintered low purity alumina ceramics were machined with various tools to clarify the machniability, the optimum tool materials and the optimum tool materials and the optimum cutting conditions. The maon conclusions obtained were as follows. (1) Machined withalloy steel tool, the machinabilty of te pre-sintered ceramics becomes better with the decrease of pre-sintering temperature, but that of unsintered ceramics(white body) was extremely poor. (2) In the case of carbide tool K01, the tool life in machining white body was the longest, and the machinabilty of pre-sintered ceramics becomes poorer with the increase of the pre-sintering temperature. (3) In the case of ceramic tool, the 10000-1100 .deg. C pre-sintered ceramics showed te best machinability within a certain cutting speed range. So far as dry machining, the above combination and conditions showed the highest productivity. (4) When the pre-sintered ceramics were wet machined withsintered diamond tool, the tool life becomes extremelylong, and higher cutting speed can be can be used than in the case offull-sintered ceramics. The productivity of wet cutting is much higher than that ofdry cutting.

  • PDF

A Study on the Sintering of Diamond Composite at Low Temperature Under Low Pressure and its Subsequent Conductive PVD Process for a Cutting Tool (절삭 공구용 다이아몬드 복합체의 저온 저압 소결 합성 및 후속 도전형 박막 공정 특성 연구)

  • Cho, Min-Young;Ban, Kap-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • Generally, high-temperature, high-pressure, high-priced sintering equipment is used for diamond sintering, and conductivity is a problem for improving the surface modification of the sintered body. In this study, to improve the efficiency of diamond sintering, we identified a new process and material that can be sintered at low temperature, and attempted to develop a composite thin film that can be discharged by doping boron gas to improve the surface modification of the sintered body. Sintered bodies were sintered by mixing Si and two diamonds in different particle sizes based on CIP molding and HIP molding. In CVD deposition, CVD was performed using WC-Co cemented carbide using CH4 and H2 gas, and the specimen was made conductive using boron gas. According to the experimental results of the sintered body, as the Si content is increased, the Vickers hardness decreases drastically, and the values of tensile strength, Young's modulus and fracture toughness greatly increase. Conductive CVD deposited diamond was boron deposited and discharged. As the amount of boron added increased, the strength of diamond peaks decreased and crystallinity improved. In addition, considering the release processability, tool life and adhesion of the deposition surface according to the amount of boron added, the appropriate amount of boron can be confirmed. Therefore, by solving the method of low temperature sintering and conductivity problem, the possibility of solving the existing sintering and deposition problem is presented.

Study on the Development of Sintered Carbide Roller Mold for Reflector -Analysis of Reflector Geometry and Design of Acute Angle Diamond Wheel System (반사체 회전금형 초경로울러의 개발에 관한 연구(제1보) -반사체 형상 해석 및 다이 아몬드 예각지석 시스템 설계-)

  • 김동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.170-176
    • /
    • 1996
  • A Sintered carbide roller mold for reflectors which is used for cover of automobile lamp and beacon plate of highway has been developed. The geometry of sintered carbide roller mold has been determined from the analysis of reflector geometry. An acute angle diamond wheel and dressing system also has been designed and developed to manufacture the sintered carbide roller mold.

  • PDF

A Study on the Wearing Behavior of Diamond Tool used to Machining of Ceramics (세라믹스 가공용 다이아몬드 공구 마모에 관한 연구)

  • Park, Sang-Hee;Kim, Kwang-Min;Choi, Seong-Dae;Hong, Young-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • In this study, coring with diamond core drill on the sintered $Al_2O_3$ ceramic plate were carried out with different coring conditions such as various cutting speed and feed rate to evaluate their effectiveness on the wearing behavior of diamond tool and coring quality. The wearing rate of diamond core drill were getting better with increasing cutting speed and feed rate but the quality of cored hole were getting worse as increasing cutting speed and feed rate.