• Title/Summary/Keyword: Sintered ceramics

Search Result 1,039, Processing Time 0.027 seconds

Low-Temperature Sintering of PZT+0.5wt%$MnO_2$+1wt%$B_2O_3$ ceramics (PZT + 0.5wt%$MnO_2$ + 1wt%$B_2O_3$ 세라믹스의 저온소결에 관한 연구)

  • Shin, Hyea-Kyoung;Kim, Dea-Il;Bae, Seon-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.346-347
    • /
    • 2005
  • In this study, in order to develop the low temperature sintering ceramics, PZT ceramics adding $MnO_2$, $B_2O_3$ were manufactured, and their piezoelectric and dielectric properties is investigated. The results of this study were gotten such as follows. The electromechanical coupling coefficient(kp) showed good properties on the whole, showed its maximum value 28.266 in specimens sintered at 1200[$^{\circ}C$]. The mechanical quality coefficient(Qm) showed its maximum value 162.61 in specimens sintered at 1200[$^{\circ}C$] and was increased by increasing sintering temperature. The dielectric constant showed the optimum values of 538.903 at specimen sintered at $1000^{\circ}C$.

  • PDF

The Effects of Surface Finish and Grain Size on the Strength of Sintered SiC (소결탄화규소의 표면처리 및 비정상 성장입자가 강도에 미치는 영향)

  • 유영혁;김영욱;이준근;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.27-32
    • /
    • 1984
  • During the last decade there have been many studies on the new ceramics especially engineering ceramics. Sintered silicon carbide is one of the main materials in engineering ceramics. This study shows the effects of surface treatment and microstructure especially the abnormal grain growth on the strength of sintered SiC. Surface of sintered SiC and treated with 400, 800 and 1200 grit diamond wheel. Grain growth is introduced by increasing the sintering times at 205$0^{\circ}C$. The $\beta$longrightarrow$\alpha$ transformation occurs during the sintering of $\beta$-starting materials and is often accompanied by abnormal grain growth. The overall strength distribution are estimated using the Weibull statistics. The results show that the strength of sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. And it is sound that the finer the surface finishing and the grain size the higher the strength results. But the strength of abnormal sintering specimens is limited by the abnormally-grown large tabular grains. The Weibull modulus increases with the decreasing grain size and the decreasing grit size of grinding.

  • PDF

Structural Properties of $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] Ceramics with Sintering Temperature (소결온도에 따른 $Ba(Zn_{1/3}Ta_{2/3})O_3$[BZT] 세라믹스의 구조적 특성)

  • Lee, Sang-Chul;Kim, Ji-Hoon;Kim, Kang;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.76-79
    • /
    • 2000
  • The $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics were prepared by conventional mixed oxide method. The structural properties of the BZT ceramics with the sintering temperature were investigated by XRD, SEM. The BZT ceramics have a complex-perovskite structure. The BZT ceramics sintered at $1550^{\circ}C$ had a superstructure plane of BZT(100). Increasing the sintering temperature, the bulk density and ordering were increased. The bulk density of the BZT ceramics sintered at $1550^{\circ}C$ was $7.50[g/cm^3]$. Increasing the sintering temperature, the average grain size were increased and pore were decreased.

  • PDF

Possible Strategies for Microstructure Control of Liquid-Phase-Sintered Silicon Carbide Ceramics

  • Chun, Yong-Seong;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.542-547
    • /
    • 2005
  • Keys to the attainment of tailored properties in SiC ceramics are microstructure control and judicious selection of the sintering additives. In this study, three different strategies for controlling microstructure of liquid-phase-sintered SiC ceramics (LPS-SiC) have been suggested: control of the initial $\alpha-SiC$ content in the starting powder, a seeding technique, and a post-sintering heat treatment. The strategies suggested offer substantial flexibility for producing toughened SiC ceramics whereby grain size, grain size distribution, and aspect ratio can be effectively controlled. The present results suggest that the proposed strategies are suitable for the manufacture of toughened SiC ceramics with improved toughness.

Effect of Crystal Phases on the Properties of Sintered Glass-Ceramics for $CaO-MgO-Al_2O_3-SiO_2$ System ($CaO-MgO-Al_2O_3-SiO_2$계의 글라스-세라믹에서 결정상이 소결체에 미치는 영향)

  • 김형순
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.558-564
    • /
    • 1992
  • The effect of composed phase in the hot pressed CaO-MgO-Al2O3-SiO2 glass-ceramic has been investigated through microstructure studies, thermal, physical and mechanical properties. Sintering was done in the condition at the temperature range 900~95$0^{\circ}C$ for 20~120 mins under 7.5 MPa unilateral pressure. Sintered ceramics were composed of diopside, anorthite, residual glass and the portion of each phase was dependent on the sintering temperature and the holding time: as the temperature increases, the amount of diopside increased and then the rate of increase of diopside reduced with increasing anorthite. The thermal expansion coefficient of hot pressed was reduced with increasing crystallinity of hot pressed and was in the range of 6.69~7.46$\times$10-6 K-1 below $600^{\circ}C$. The elastic constant of hot pressed increased with increasing crystallinity up to about 80%, but after that was reduced due to the change of microstructure. The flexural strength of sintered ceramics was decreased with higher temperature and holding time, while the fracture toughness of those increased. It was shown that the physical and mechanical properties of hot pressed ceramic were related to the fraction of composed sintered ceramics, similar to a particulate composite, to the crystallinity of 80% of the glass-ceramic.

  • PDF

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics

  • Yoo, H.S.;Son, Y.H.;Hong, T.W.;Ur, S.C.;Ryu, S.L.;Kweon, S.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.533-534
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. All XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050\;^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050\;^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5kV. From these results, a BLT ceramic target for plused laser deposition (PLD) system was successfully fabricated.

  • PDF

Microstructure Characteristics and Electrical Properties of Sintered $(Bi,La)_4Ti_3O_{12}$ Ferroelectric Ceramics (소결한 $(Bi,La)_4Ti_3O_{12}$ 강유전체 세라믹의 미세구조 및 전기적 특성)

  • Yoo, Hyo-Sun;Son, Yong-Ho;Ur, Soon-Chul;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.276-277
    • /
    • 2006
  • 1mm-thick BLT ceramics were sintered in accordance with a bulk ceramic fabrication process. AII XRD peaks detected in the sintered ceramics were indexed as the Bi-layered perovskite structure without secondary phases. Density was increased with increasing the sintering temperature up to $1050^{\circ}C$ and the maximum value was about 98% of the theoretical density. The remanent polarization (2Pr) value of BLT ceramic sintered at $1050^{\circ}C$ was approximately $6.5\;{\mu}C/cm^2$ at the applied voltage of 4.5 kV. The calculated electromechanical coupling factor ($k_t$) of it was about 5% and the mechanical quality factor (Qm) was about 2200. From these results, a BLT ceramic target for pulsed laser deposition (PLD) system was successfully fabricated.

  • PDF

Fabrication of Undoped PbTiO3 Ceramics via Sol-Gel Processing (Sol-Gel Processing에 의한 순수 $PbTiO_3$ Ceramics 제조)

  • 김선욱;윤만순;임종인;김성숭;김남흥
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.211-215
    • /
    • 1992
  • Crack free PbTiO3 ceramics were produced by sol-gel processing using alkoxide, which has not been reported to be successful. The PbTiO3 gels were prepared from Ti alkoxide and lead acetate without any dopants. They were calcined at $600^{\circ}C$ and miled to produce fine PbTiO3 powder. It was pressed into discs and they were sintered at 110$0^{\circ}C$ for a few hours. The sintered ceramics were relativley hard and dense as having about 96% of theoretical density of PbTiO3. Fabrication of pure PbTiO3 ceramics by sol-gel processing is possibly due to their small grain size and uniform distribution of residual stress created during cubic-tetragonal transition over large number of small grains in fine grain PbTiO3 ceramics.

  • PDF

Effect of Large $\alpha$-Silicon Carbide Seed Grains on Microstructure and Fracture Toughness of Pressureless-Sintered $\alpha$-Silicon Carbide

  • Young-Wook Kim;Kyeong Sik Cho;June-Gunn Lee
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.39-42
    • /
    • 1996
  • ${\alpha}-SiC$ powder with or without the addition of 0.1 wt% of large ${\alpha}-SiC$ partices(seeds) was pressureless-sintered at $1950^{\circ}C$ for 0.5, 2, and 4 h using $Y_3Al_5 O_{12}$ (yttrium aluminum garnet, YAG) as a sintering aid. The materials without seeds had an equiaxed grain struture. In contrast, the materials with seeds sintered for 2 and 4 h had a duplex microstructure with large elongated grains and amall equiaxed grains. Addition of large ${\alpha}-SiC$ seeds into ${\alpha}-SiC$ accelerated the grain growth of some ${\alpha}-SiC$ grains during sintering and resulted in the increased fracture toughness of the sintered materials. The fracture toughnesses of materials with or without seeds sintered for 4 h were 6.6 and $5.2 MPa \;m^{12}$, respectively.

  • PDF