• Title/Summary/Keyword: Sintered ceramics

Search Result 1,040, Processing Time 0.026 seconds

Mechanical properties of zirconia after different surface treatments and repeated firings

  • Subasi, Meryem Gulce;Demir, Necla;Kara, Ozlem;Ozturk, A. Nilgun;Ozel, Faruk
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.462-467
    • /
    • 2014
  • PURPOSE. This study investigated the influence of surface conditioning procedures and repeated firings on monoclinic content and strength of zirconia before cementation. MATERIALS AND METHODS. Sintered bar-shaped zirconia specimens were subjected to no surface treatment (control), air abrasion, or grinding (n=21). Their roughness was evaluated using a profilometer, and microscope analysis was performed on one specimen of each group. Then, 2 or 10 repeated firings (n=10) were executed, the monoclinic content of specimens was analyzed by X-ray diffraction, and a three-point flexural strength test was performed. Surface roughness values were compared using one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests, the monoclinic content values were tested using Kruskal-Wallis and Mann-Whitney U tests, and the flexural strength values were tested using two-way ANOVA and Tukey HSD tests (P=.05). Spearman's correlation test was performed to define relationships among measured parameters. RESULTS. Surface-treated specimens were rougher than untreated specimens and had a higher monoclinic content (P<.005), and the relationship between roughness and monoclinic content was significant (P<.000). Neither surface treatment nor firing significantly affected the flexural strength, but Weibull analysis showed that for the air-abraded samples the characteristic strength was significantly lower after the $10^{th}$ firing than after the $2^{nd}$ firing. CONCLUSION. After firing, a negligible amount of monoclinic content remained on the zirconia surfaces, and rougher surfaces had higher monoclinic contents than untreated surfaces. Multiple firings could be performed if necessary, but the fracture probability could increase after multiple firings for rougher surfaces.

Interfacial modulus mapping of layered dental ceramics using nanoindentation

  • Theocharopoulos, Antonios L;Bushby, Andrew J;P'ng, Ken MY;Wilson, Rory M;Tanner, K Elizabeth;Cattel, Michael J
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.479-488
    • /
    • 2016
  • PURPOSE. The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS. YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A $5{\mu}m$ (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS. A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of $40{\mu}m$ in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION. The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.

The Influence of Sintering Atmosphere on the Reduction Behaviour of Refractory Bricks and the Basic Properties of $UO_{2}$ Pellet

  • Lee, Seung-Jae;Kim, Kyu-Tae;Chung, Bum-Jin
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.279-285
    • /
    • 1998
  • The $UO_2$ pellets are usually sintered under hydrogen gas atmosphere. Hydrogen gas may cause unexpected early failure of the refractory bricks in the sintering furnace. In this work, nitrogen was mixed with hydrogen to investigate the effect of nitrogen gas on a failure machanism of the refractory bricks and on the microstructure of the $UO_2$ pellet. The hydrogen-nitrogen mixed gas experiments show that the larger nitrogen the mixed gas contains, the less the refractory materials are reduced by hydrogen. The weight loss measurements at $1400^{\circ}C$ for fire clay and chamotte refractories containing high content of $SiO_2$ indicate that the weight loss rate for the mixed gas is about half of that for the hydrogen gas. Based on the thermochemical analyses, it is proposed that the weight loss is caused by hydrogen-induced reduction of free $SiO_2$ and/or $SiO_2$ bonded to $Al_2O_3$ in the fire clay and chamotte refractories. However, the retardation of the hydrogen-induced $SiO_2$ reduction rate under the mixed gas atmosphere may be due to the reduction of the surface reaction rate between hydrogen gas and refractory materials in proportion to volume fraction of nitrogen gas in the mixed gas. On the other hand, the mixed gas experiments show that the test data for $UO_2$ pellet still meet the related specification values, even if there exists a slight difference in the pellet microstructural parameters between the cases of the mixed gas and the hydrogen gas.

  • PDF

A Study on the microstructure and Surge Characteristics of ZnO varistors for distribution Arrester (배전급 피뢰기용 ZnO 바리스터 소자의 미세구조 및 서지 특성에 관한 연구)

  • 김석수;조한구;박태곤;박춘현;정세영;김병규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.190-197
    • /
    • 2002
  • In this thesis, ZnO varistors with various formulation, such as A∼E, were fabricated according to ceramic fabrication method. The microstructure, electrical properties, and surge characteristics of ZnO varistors were investigated according to ZnO varistors with various formulation. In the microstructure, A∼E\`s ZnO varistor ceramics sintered at 1130$\^{C}$ was consisted of ZnO grain(ZnO), spinel phase (Zn$\_$2.33/Sb$\_$0.67/O$\_$4/), Bi-rich phase(Bi$_2$O$_3$) and intergranuler phase, wholly. Lightning impulse residual voltage of A, B, C and E\`s ZnO varistors suited standard characteristics, below 12kV at current of 5kA. On the contrary, D\`s ZnO varistor exhibited high residual voltage as high reference voltage. In the accelerated aging test, leakage current and watt loss of B, C and D\`s ZnO varistors increases abruptly with stress time under the first a.c. stress(115$\^{C}$/3.213kV/300h). Consequently, C varistor exhibited a thermal run away. On the contrary, leakage current and watt loss of A and C\`s ZnO varistors which show low initial leakage current exhibited constant characteristics. After high current impulse test, A\`s ZnO varistor has broken the side of varistor but impulse current flowed. On the contrary, E\`s ZnO Varistor exhibited good discharge characteristics which the appearance of varistor was not wrong such as puncture, flashover, creaking and other significant damage. After long duration impulse current test, E\`s ZnO varistor exhibited good discharge characteristics which the appearance of varistor was not wrong such as puncture, flashover, creaking and other significant damage. After high current impulse test and long duration impulse current test, E\`s ZnO varistor exhibited very good characteristics which variation rate of residual voltage is 1.4% before and after test.

Structural and Electrical Properties of Zn-Mn-O System Ceramics for the Application of Temperature Sensors (온도센서로의 응용을 위한 Zn-Mn-O계 세라믹의 구조적, 전기적 특성)

  • Kim, Kyeong-Min;Lee, Sung-Gap;Lee, Dong-Jin;Park, Mi-Ri;Kwon, Min-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.470-475
    • /
    • 2016
  • In this study, $Zn_xMn_{3-x}O_4$ (x=0.95~1.20) specimens were prepared by using a conventional mixed oxide method. All specimens were sintered in air at $1,200^{\circ}C$ for 12 h and cooled at a rate of $2^{\circ}C/min$ to $800^{\circ}C$, subsequently quenching to room temperature. We investigated the structural and electrical properties of $Zn_xMn_{3-x}O_4$ specimens with variation of ZnO amount for the application of NTC thermistors. As results of X-ray diffraction patterns, all specimens showed the formation of a complete solid solution with tetragonal spinel phase. And, the second phase was observed by the solubility limit of Zn ions in $x{\geq}1.10$ composition. The average grain size was increased from $2.72{\mu}m$ to $4.18{\mu}m$ with increasing the compositional ratio of Zn ion from x=0.95 to 1.20, respectively. $Zn_{1.10}Mn_{1.90}O_4$ specimen showed the minimum electrical resistance of $57.5k{\Omega}$ at room temperature and activation energy of 0.392 eV.

Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System (ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

Mechanical and Thermal Conductivity Properties of Yttrium Nitrate Added AlN Sintering Body (Y(NO3)3·6H2O 첨가된 AlN 소결체의 기계적 및 열전도도 특성)

  • Chung, J.K.;Lee, J.H.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • Aluminum nitride (AlN) is used by the semiconductor industry that has requirements for high thermal conductivity. The theoretical thermal conductivity of single crystal AlN is 320W/mK. Whereas, the values measured for polycrystalline AlN ceramics range from 20 W/mK to 280 W/mK. The variability is strongly dependent upon the purity of the starting materials and non-uniform dispersibility of the sintering additive. The conventional AlN sintering additive used yttria ($Y_2O_3$), but the dispersibility of the powder in the mixing process was important. In this study, we investigated the mechanical and thermal conductivity of yttrium nitrate ($Y(NO_3)_3{\cdot}6H_2O$), as a sintering additive in order to improve the dispersibility of $Y_2O_3$. The sintering additives content was in the range of 2 to 4.5wt.%. The density of AlN gradually increased with increasing contents of sintering additive and the flexural strength gradually increased as well. The flexural strength of the sintered body containing 4 wt% of $Y_2O_3$ and $Y(NO_3)_3{\cdot}6H_2O$ was 334.1 MPa and 378.2 MPa, respectively. The thermal conductivities were 189.7W/mK and 209.4W/mK, respectively. In the case of hardness, there was only a slight difference and the average value was about 10 GPa. Therefore, densification, density and strength values were found to be proportional to its content. It was confirmed that AlN using $Y(NO_3)_3{\cdot}6H_2O$ displayed relatively higher thermal conductivity and mechanical properties than the $Y_2O_3$.

Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC (액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향)

  • JUNG HUN-CHAE;YOON HAN-KI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$Structural Ceramics ; I. Synthesis and Sinterability of Powder ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : I 분말의 합성 및 소결성)

  • 오혁상;이윤복;김영우;오기동;박흥채
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1057-1063
    • /
    • 1996
  • Y2O3-CeO2-ZrO2 powders were prepared from water-soluble salts using a coprecipitation method. The forming process of oxide and the characteristics of the calcined powders treated in different drying conditions were investigated. The oxidation was occurred at the temperature of around 40$0^{\circ}C$ and the main crystallization of ZrO2 around $600^{\circ}C$. On calcination at $600^{\circ}C$ heating lamp-dried powders consisted of agglomerates of globular morphology with average agglomerate size of 2.27${\mu}{\textrm}{m}$ and specific surface area of 68.3m2/g and spray dried powders contained dense spheric particles with average agglomerate size of 1.35${\mu}{\textrm}{m}$ and specific surface area of 11.0m2/g which exhibited low agglomeration tendency. Removal of the water by a freeze-drying technique produced calcined powders containing flake-like secondary particle structures with wide agglomerate size distri-bution of 0.1-60${\mu}{\textrm}{m}$ and specific surface area of 24.5${\mu}{\textrm}{m}$. The 20 MPa-pressed density (36.8-41.4% T,D) of calcined powders did not nealy depend on drying methods whilst compaction ratio of calcined powders derived from freeze-drying was the highest ( 6.24) among three drying methods. On continuous heating up to 150$0^{\circ}C$ the sinterability of calcined powders derived from heating lamp-drying was superior to those derived from spray-and freeze-drying. The final sintered density of calcined powders was the highest (96% T,D at 150$0^{\circ}C$) in case of heating lamp-drying.

  • PDF

Glass-Ceramics of $Li_2O-Al_2O_3-SiO_2$ System Produced by Sintering (소결법에 의한 $Li_2O-Al_2O_3-SiO_2$계 결정화 유리의 제조)

  • 연석주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.176-184
    • /
    • 1993
  • The glasses, which the $\beta$-spodumene as the principal crystalline phase could be precipitated, were melted by adding >, $P_2O_5, TiO_2, ZrO_2 in the Li_2O-Al_2O_3-SiO_2$ system. In order to achieve the glass-ceramic body of near-theoritical density by sintering method, the optimum condition of heat treatment, the effect of glass powder size and the properties were investigated by DTA, XRD, bulk density, thermal expansion and SEM. Addition of $P_20_5$ imProved the tendency of sintering and the sample with 9wt% $P_20_5$ content was the most dense OOdy by sintering method. The optimum condition of heat treatmemt was sintered for densitification at $740^{\circ}C$ and crystallized at $950^{\circ}C$. In the optimum condition, the relative density was above 90% and the thermal expansion was negative about $-1{\times}10^{-7}/^{\circ}C$.

  • PDF