• Title/Summary/Keyword: Sintered body

Search Result 333, Processing Time 0.03 seconds

Effect of the Whisker Amount and Orientation on Mechanical Properties of the Si$_3$N$_4$ based Composites (Si$_3$N$_4$ Whisker의 첨가량과 배열방향이 Si$_3$N$_4$ 복합 소결체의 기계적 특성에 미치는 영향)

  • Kim, Chang-Won;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • Gas pressure sintered silicon nitride based composites with 0~5wt% $\beta$-Si3N4 whiskers were prepared. The whiskers were unidirectionally oriented by a modified tape casting technqiue and green bodies with various microstructure were formed by changing stacking sequences of sheets cut from the tape. Orientations of the large elongated grains of the sample after gas pressure sintering were the same as the those of the whiskers of green body, and the sintering shrinkage and mechanical properties of sintered sample were consistent with the microstructural characteristics. In case of unidirectional samples, the sintering shrinkage normal to whisker alignment direction was larger than that parallel to the direction. The shrinkage difference inceaed as the whiskercontent increaed. As whisker content increaed, the crack length normal to and parallel to tape casting direction became shorter and larger, respectively. Although the grain size increased by th whisker addition, the flexural strength of unidirectional samples was not lower than that of smaple without the whisker. In case of crossplied and 45$^{\circ}$rotated samples, the anisotropy of mechanical preoperties disappeared.

  • PDF

Fabrication of Silicon Nitride Ceramics Using Semiconductor-Waste-Si Sludge (반도체 폐 Si 슬러지를 이용한 질화규소세라믹의 제조)

  • Lee, Byong-Taek;Yoo, Jung-Ho;Kim, Hai-Doo
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1170-1175
    • /
    • 1999
  • The microstructures and mechanical properties of $Si_3N_4$ ceramics produced by nitridation and post-sintering using semiconductor-waste-Si sludge were investigated. Lots of microcracks were observed in the waste-Si powders which contained some amounts of amorphous $SiO_2$. The nitridation rate of waste-Si compacts showed lower value than that of commercial Si powder compacts. The nitridation rate was increased with increasing nitridation temperature and then the percent of nitridation at 1470$^{\circ}C$ showed 98%. The phases of $Si_3N_4$ in the reaction-bonded bodies were mixed with ${\alpha}$ and ${\beta}$-type, and small amounts of $Si_2N_2O$ phase while those after post-sintering were ${\beta}$-$Si_3N_4$ and ${\alpha}$-Sialon. The sample post-sintered at 1950$^{\circ}C$ showed the fracture toughness of 5.6 $^MPa{\cdot}m^{1/2}$ and the fracture strength of 497 MPa which were lower than those of sintered body using commercial Si powder possibly due to the formation of ${\alpha}$-Sialon phase.

  • PDF

Characterization of crystal phase evolution in cordierite honeycomb for diesel particulate filter by using rietveld refinement and SEM-EDS methods (Rietveld 정밀화법과 SEM-EDS 분석에 의한 DPF용 코디어라이트 하니컴 세라믹스의 결정성장 과정 분석)

  • Chae, Ki-Woong;Kim, Kang San;Kim, Jeong Seog;Kim, Shin-Han
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.116-126
    • /
    • 2021
  • Diesel particulate filter (DPF) is a typical application field of cordierite (Mg2Al4Si5O18) honeycomb. Green body for DPF honeycomb was extruded using slurry paste and sintered at the temperature range of 980~1450℃. Quantitative crystal phase analysis was carried out by using Rietveld refinement method for powder XRD data. In conjunction with the quantitative Rietveld analysis, SEM-EDS analysis was carried for the crystal phases (indialite, cordierite, cristobalite, alumina, spinel, mullite, pro-enstatite). After removing amorphous phase on the sintered surfaces by chemical etching method, the shape and composition of the crystal phases can be clearly identified by SEM-EDS method. By combining the Rietveld refinement method and SEM-EDS analysis, crystal phase evolution process in DPF cordierite ceramics could be clarified. In addition, the coefficient of thermal expansion (CTE) of the DPF honeycombs were measured and compared with the calculated CTEs based on the quantitative crystal phase analysis results.

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

Utilization of Mine failings from the Jeonju-Il Mine (전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究))

  • Jeong, Soo-Bok;Chae, Yeung-Bae;Hyun, Jong-Yeong;Kim, Hyung-Seok;Yoon, Sung-Moon
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.44-53
    • /
    • 2007
  • The Jeonju-Il mine tailings contain large quantities of $SiO_2\;and\;Al_2O_3$ and lesser quantities of metallic components. In this study, we studied about the possibility of using mine tailings as a raw material in various industries. it was found that the sintered mine tailings had a good quality in every respect such as chromaticity, firing shrinkage and water absorption etc. Therefore if can substitute clay mineral in the ceramic industry. Also it can substitute about 2.94% of the raw materials of ordinary portland cement. We can use the coarse tailing as the fine aggregate for the ready-mixed mortar; and the fine tailing, as the filler for the bituminous paving mixture; because both products were not only suitable for Korea industrial standard in quality, but also environmentally harmless.

Effect of Step Pressure on Shape Forming of Alumina by Pressure-Vacuum Hybrid Slip Casting (가압-진공 하이브리드 주입 성형에 의한 알루미나의 성형에 미치는 다단 가압의 영향)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Woo, Byeong-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.142-148
    • /
    • 2013
  • Conventional cold isostatic pressing, slip casting, and filter pressing are not completely suitable for fabricating large plates because of disadvantages such as the high cost of equipment and formation of density gradient. These problems could be avoided by employing pressure-vacuum hybrid slip casting (PVHSC). In the PVHSC, the consolidation occurs not only by the compression of the slip in casting room, but also by vacuum sucking of the dispersion medium around the mold. We prepared the alumina bodies by the PVHSC in a static- or stepwise-pressure manner for loading up to 0.5 MPa using an aqueous slip. The green bodies were dried at $30^{\circ}C$ with 40 ~ 80% relative humidity. Under static pressure, casting induced a density gradient in the formed body, resulting in cracking and distortion after the firing. However, the stepwise pressure loading resulted in green bodies with homogeneous density, and the minimization of the appearance of those defects in final products. Desirable drying results were obtained from the cast bodies dried with 80% RH environment humidity. When sintered at $1650^{\circ}C$ for 4 h, the alumina plate made by stepwise-pressure casting reached full density (> 99.7% relative density).

Change Of the Properties and the $Cr_3C_2$ Phase by Sintering Atmospere on $Ti(C, N)-Cr_3C_2$ Ceramics ($Ti(C, N)-Cr_3C_2$, 소결체의 오결분위기에 따른 물성과 $Cr_3C_2$ 상변화)

  • 김무경;이재의
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.44-52
    • /
    • 1992
  • The effect of sintering atmosphere on the final properties and phase change of Ti (C, N) Cr3c2 ceramics was investigated. In the case of sintering in vacuum and N2 atmosphere, densely packed sintered body was obtained. In Ar atmosphere, however, densification was much decreased compared to sintering in vacuum and Na. XRD analysis showed that in vacuum atmosphere Cr3c2 phase was changed to Cr7c3 Phase whereas in N2 and Ar atmosphere phase change was not occurred. That is, for vacuum sintering, the formation of defects in Ti(C, N) structure occurred through de-nitridation process, and it promotes the diffusion of C in Cr3c2 and raises the densification effects. But in the case of N2 atmosphere, densification phenomenon was considered to be due to sintering mechanism that enabled formation of free carbon and removal of oxygen by free carbon and existence of carbon in the grain boundary.

  • PDF

Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn (CuO-SnO2/camphene 슬러리의 동결 및 소결조건이 Cu-Sn 다공체의 기공구조에 미치는 영향)

  • Kim, Joo-Hyung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of $CuO-SnO_2$/camphene slurry. Mixtures of CuO and $SnO_2$ powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of $CuO-SnO_2$ are unidirectionally frozen in a mold maintained at a temperature of $-30^{\circ}C$ for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at $650^{\circ}C$ for 2 h, the green body of the $CuO-SnO_2$ is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to $300{\mu}m$ with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF