• 제목/요약/키워드: Sintered body

검색결과 333건 처리시간 0.031초

석탄회로부터 제조된 $\beta-Sialon$의 고온산화반응 (A Study on the Oxidation of Sintered $\beta-Sialon$from Coal Fly-Ash)

  • 길대섭;김원백;이재천;장희동
    • 자원리싸이클링
    • /
    • 제12권5호
    • /
    • pp.29-35
    • /
    • 2003
  • 국내의 화력발전소에서 발생되는 Fly ash와 활성탄을 원료로 사용하여 환원질화방법에 의해 $\beta$-Sialon 분말을 합성하였다. 분말합성은 $1,450^{\circ}C$에서 10시간 동안 질소분위기에서 합성하였으며, 또한 소결체 제조는 $1,550^{\circ}C$에서 3시간 동안 관상로에서 소결하였다. 본 실험에서 합성된 $\beta$-Sialon의 z value는 2.15이었으며 XRD 분석결과 $\beta$-Sialon 이외에 소량의 $SiO_2$$_FeSi{x}$ 가 일부 확인되었다. $\beta$-Sialon 소결체는 20시간 동안의 고온산화 결과 1,31$0^{\circ}C$까지는 열적으로 매우 안정하나 $1,360^{\circ}C$ 부근에서는 급격한 무게의 증가를 나타냈다. $1,360^{\circ}C$에서 10시간 고온산화 후 산화층은 mullite로 상전이가 일어났다.

Al-B-C 첨가 탄화규소의 스파크 플라즈마 소결에 의한 미세구조 발달 (Microstructure Development of Spark Plasma Sintered Silicon Carbide with Al-B-C)

  • 조경식;이광순;이현권;이상진;최헌진
    • 한국세라믹학회지
    • /
    • 제42권8호
    • /
    • pp.567-574
    • /
    • 2005
  • Densification of SiC powder with additives of total amount of2, 4, 8 $wt\%$ Al-B-C was carried out by Spark Plasma Sintering (SPS). The unique features of the process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. The heating rate and applied pressure were kept at $100^{\circ}C/min$ and 40 MPa, while the sintering temperature and holding time varied from 1700 - $1800^{\circ}C$ for 10 - 40 min, respectively. The SPS-sintered specimens with different amount of Al-B-C at $1800^{\circ}C$ reached near-theoretical density. The $3C{\rightarrow}6H,\;15R{\rightarrow}4H$ phase transformation of SiC was enhanced by increasing the additive amount. The microstructure of SiC sintered up to $1750^{\circ}C$ consisted of fine equiaxed grains. In contrast, the growth of large elongated grains in small matrix grains was shown in sintered bodies at $1800^{\circ}C$, and the plate-like grains interlocking microstructure had been developed by increasing the holding time at $1800^{\circ}C$. The grain growth rate decreases with increasing amount of Al-B-C in SiC starting powder, however, the both of volume fraction and aspect ratio of large grains in sintered body increased.

Hydroxyapatite/Polyacrylic Acid 균질복합체의 소결 특성 및 기계적 강도 (Sintering Behavior and Mechanical Strength of Hydroxyapatite/Polyacrylic Acid Homogeneous Composite)

  • 이병교;이석기;구광모;이미혜;이형동
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.566-571
    • /
    • 2003
  • 합성 수산화아파타이트(HAp)와 바인더로서 폴리아크릴산(PAA)을 사용하여 공침법으로 조성비가 서로 다른 HAp/PAA균질복합체 4종을 제조하였고, 이 균질복합체를 냉간정수압법으로 성형 및 공기중에서 여러조건으로 소결하였다. HAp/PAA composite의 소결체는 XRD 및 U-IR로 결정성 및 구조를 조사하였고, 또한 소결시편은 만능재료시험기(UTM)로 압축강도를 측정하였으며, 파단된 소결시편의 표면은 SEM으로 관측하였다 HAp/PAA composite는 120$0^{\circ}C$ 및 3시간의 소결조건에서 부분적인 $\alpha$, $\beta$-tricalcium phosphate로 상전이가 일어났다. 소결체의 기공크기와 기공률은 각각 0.2~3.0 $\mu\textrm{m}$와 0.49~13.43% 범위였고, 소결시편의 압축강도는 36.6~58.2 MPa 범위로 나타났다. 이상의 결과로 부터 HAp/PAA composite의 소결체는 균일한 기공형태로 인해 우수한 압축강도를 가지는 미세다공성 HAp라고 설명할 수 있다.

Sintering and Mechanical Properties of Chromium Boride-chromium Carbide Composites

  • Matsushita, Jun-Ichi;Shimao, Kenji;Machida, Yoshiyuki;Takao, Takumi;Iizumi, Kiyokata;Sawada, Yutaka;Shim, Kwang-Bo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1104-1105
    • /
    • 2006
  • Several boride sintered bodies such as $TiB_2$, $ZrB_2$, and $SiB_6$ were previously reported. In the present study, the sinterability and physical properties of chromium boride $(CrB_2)$ containing chromium carbide $(Cr_3C_2)$ sintered bodies were investigated in order to determine its new advanced material. The samples were sintered at desired temperature for 1 hour in vacuum under a pressure by hot pressing. The relative density of sintered bodies was measured by Archimedes' method. The relative densities of $CrB_2$ addition of 0, 5, 10, 15 and 20 mass% $Cr_3C_2$ composites were 92 to 95%. The Vickers hardness of the $CrB_2$ with 10 and 15 mass% $Cr_3C_2$ composites were about 14 and 15 GPa at room temperature, respectively. The Vickers hardness at high temperature of the $CrB_2$ addition of 10 mass% $Cr_3C_2$ composite decreased with increasing measurement temperature. The Vickers hardness at 1273 K of the sample was 6 GPa. The Vickers hardness of $CrB_2$ addition of $Cr_3C_2$ composites was higher than monolithic $CrB_2$ sintered body. The powder X-ray diffraction analysis detected CrB and $B_4C$ phases in $CrB_2$ containing $Cr_3C_2$ composites.

  • PDF

Al-B-C 조제 β-SiC의 스파크 플라즈마 소결에 미치는 α-SiC seed 첨가 영향: 미세 구조 변화 (Influence of α-SiC Seed Addition on Spark Plasma Sintering of β-SiC with Al-B-C: Microstructural Development)

  • 조경식;이현권;이상우
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.13-22
    • /
    • 2010
  • The unique features of spark plasma sintering process are the possibilities of a very fast heating rate and a short holding time to obtain fully dense materials. $\beta$-SiC powder with 0, 2, 6, 10 wt% of $\alpha$-SiC particles (seeds) and 4 wt% of Al-B-C (sintering aids) were spark plasma sintered at $1700-1850^{\circ}C$ for 10 min. The heating rate, applied pressure and sintering atmosphere were kept at $100^{\circ}C/min$, 40 MPa and a flowing Ar gas (500 CC/min). Microstructural development of SiC as function of seed content and temperature during spark plasma sintering was investigated quantitatively and statistically using image analysis. Quantitative image analyses on the sintered SiC ceramics were conducted on the grain size, aspect ratio and grain size distribution of SiC. The microstructure of SiC sintered up to $1700^{\circ}C$ consisted of equiaxed grains. In contrast, the growth of large elongated SiC grains in small matrix grains was shown in sintered bodies at $1750^{\circ}C$ and the plate-like grains interlocking microstructure had been developed by increasing sintering temperature. The introduction of $\alpha$-SiC seeds into $\beta$-SiC accelerated the grain growth of elongated grains during sintering, resulting in the plate-like grains interlocking microstructure. In the $\alpha$-SiC seeds added in $\beta$-SiC, the rate of grain growth decreased with $\alpha$-SiC seed content, however, bulk density and aspect ratio of grains in sintered body increased.

단일 롤 방법으로 제작한 3원계 Al-Cr-Si 급냉리본의 구조 및 열 특성 (Structure and Thermal Properties of a Ternary Al-Cr-Si Quenching Ribbon Manufactured by Single Roll Method)

  • 한창석;김기웅;김우석
    • 한국재료학회지
    • /
    • 제31권5호
    • /
    • pp.296-300
    • /
    • 2021
  • Al-Cr-Si ternary quench ribbons are fabricated using a single roll method and investigated for their structural and thermal properties. In particular, the sinterability is examined by pulse current sintering to obtain the following results. The Al74Cr20Si6 composition becomes a quasicrystalline single phase; by reducing the amount of Cr, it becomes a two-phase mixed structure of Al phase and quasicrystalline phase. As a result of sintering of Al74Cr20Si6, Al77Cr13Si10 and Al90Cr6Si4 compositions, the sintering density is increased with the large amount of Al phase; the sintering density is the highest in Al90Cr6Si4 composition. In addition, as a result of investigating the effects of sintering temperature and pressurization on the sintered density of Al90Cr6Si4, a sintered compact of 99% or more at 513 K and 500 MPa is produced. In particular, since the Al-Cr-Si ternary crystal is more thermally stable than the Al-Cr binary quaternary crystal, it is possible to increase the sintering temperature by about 100 K. Therefore, using an alloy of Al90Cr6Si4 composition, a sintered compact having a sintered density of 99 % or more at 613 K and 250 MPa can be manufactured. It is possible to increase the sintering temperature by using the alloy system as a ternary system. As a result, it is possible to produce a sintered body with higher density than that possible using the binary system, and at half the pressure compared with the conventional Al-Cr binary system.

진공사출금형용 STS316L 금속 다공체 제조 및 기계적 특성 (Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold)

  • 김세훈;김상민;노상호;김진평;신재혁;성시영;진광진;김태안
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.197-202
    • /
    • 2015
  • In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under $45{\mu}m$ and over $180{\mu}m$, and then they were compacted with various pressures and sintered at $1210^{\circ}C$ for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to $79l/min{\cdot}cm^2$. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.

하소온도의 변화에 따른 $Ba(Mg_{1/3}Ta_{2/3})O_3$계 세라믹스의 소결 거동과 마이크로파 유전특성 (Effect of Calcining Temperature on the Sintering Behaviors and Microwave Dielectric Properties of $Ba(Mg_{1/3}Ta_{2/3})O_3$ Ceramics)

  • 이정아;김정주;이희영;김태홍;최태구
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1561-1569
    • /
    • 1994
  • Effect of calcining temperature on the sintering behaviors and microwave dielectric properties of BMT[Ba(Mg1/3Ta2/3)O3] ceramics was studied. The calcining temperatures were varied from 80$0^{\circ}C$ to 130$0^{\circ}C$, respectively. It was found that, as calcining temperature lowered below 125$0^{\circ}C$, second phase such as Ba5Ta4O15 phases started to appear in calcined powder with unreacted powders. After sintering, exaggerately grown Ba5TaO3 phase could be found amang the uniform BMT grains in sintered body. Basis on the infiltration experiment, Ba0.05TaO3 phase should be formed by reaction of BMT grain and BaO-MgO eutectic liquid. But increase of calcining temperature above 125$0^{\circ}C$, there was not any second phase or unreated component in calcined powder and sintered body. As result, low calcining temperature led to precipitation of second phase in specimen and resulted decrease of Q value of BMT ceramics.

  • PDF

고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결 (Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering))

  • 김지헌;최상욱;조원승;조동수;오장환
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

상온 반복압축 후 가압소결에 의한 알루미나 분말의 소결특성 -치밀화와 결정립 성장 및 파괴인성- (Sintering Characterization of Alumina Powders by Hot Pressing after Cold Cyclic Compaction -Densification, Grain-Growth and Fracture Toughness-)

  • 손건석;서정;백성기;김기태
    • 한국세라믹학회지
    • /
    • 제30권1호
    • /
    • pp.62-68
    • /
    • 1993
  • Densification of alumina powder, grain size and fracture toughness of sintered body by hot pressing after cold compaction were investigated and compared to traditional hot pressing process (without cold cyclic compaction). To achieve a higher densification and to reduce the hot pressing time, hot pressing after cold cyclic compaction was more efficient compared to traditional hot pressing. This phenomenon resulted from the increment of packing densityby the acceleration fo rearrangement of powders under cold cyclic compaction. The grain size of sintered body was only dependent on relative density, and densification during hot pressing was governed by thelattice diffusion. Comprisons of grain size, densification mechanism and fracture toughness resulted from hot pressing after/without cold cyclic compaction showed that a low cyclic pressure may not effect on the fragmentation of alumina powders.

  • PDF