• Title/Summary/Keyword: Sink Nodes

Search Result 312, Processing Time 0.023 seconds

Strong Connection Clustering Scheme for Shortest Distance Multi-hop Transmission in Mobile Sensor Networks (모바일 센서 네트워크에서 최단거리 멀티홉 전송을 위한 강한연결 클러스터 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.667-677
    • /
    • 2018
  • Since sensor networks consist of sensor nodes with limited energy resources, so efficient energy use of sensor nodes is very important in the design of sensor networks. Sensor nodes consume a lot of energy for data transmission. Clustering technique is used to efficiently use energy in data transmission. Recently, mobile sink techniques have been proposed to reduce the energy load concentrated on the cluster header near a sink node. The CMS(Cluster-based Mobile sink) technique minimizes the generation of control messages by creating a data transmission path while creating clusters, and supports the inter-cluster one-hop transmission. But, there is a case where there is no connectivity between neighbor clusters, it causes a problem of having a long hop data transmission path regardless of local distance. In this paper, we propose a SCBC(Strong connection balancing cluster) to support the path of the minimum number of hops. The proposed scheme minimizes the number of hops in the data transmission path and supports efficient use of energy in the cluster header. This also minimizes a number of hops in data transmission paths even when the sink moves and establishes a new path, and it supports the effect of extending the life cycle of the entire sensor network.

A study of data harvest in distributed sensor networks (분산 센서 네트워크에서 데이터 수집에 대한 연구)

  • Park, Sangjoon;Lee, Jongchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3421-3425
    • /
    • 2015
  • In sensor networks, sensor nodes are usually distributed to manage the networks in continuous unique area, however as by the network property nodes can be located in several areas. The data gathering of distributed nodes to several areas can be different with current continuous area. Hence, the distributed networks can be differently managed to the current continuous networks. In this paper, we describe the data gathering of sensor nodes in distributed sensor areas. It is possible that sensor nodes cannot instantly connect the mobile sink, and the node operation should be considered. The real time data sending to the instant connection scheme of mobile sink can be implemented, but the property of mobile sink should be considered for the sink connection of distributed areas. In this paper, we analyze the proposed scheme by the simulation results. The simulation results show that the overall lifetime to the periodic data gathering method is longer than the threshold method.

Efficient Mobile Sink Location Management Scheme Using Multi-Ring in Solar-Powered Wireless Sensor Networks

  • Kim, Hyeok;Kang, Minjae;Yoon, Ikjune;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.55-62
    • /
    • 2017
  • In this paper, we proposes a multi-ring based mobile sink location scheme for solar-powered wireless sensor network (WSN). The proposed scheme maintains the multi-rings in which nodes keep the current location of sink node. With the help of nodes in multi-rings, each node can locate the sink node efficiently with low-overhead. Moreover, because our scheme utilizes only surplus energy of a node, it can maintain multiple rings without degrading any performance of each node. Experimental results show that the proposed scheme shows much better latency and scalability with lower energy-consumption than the existing single-ring based scheme.

QoS Aware Cross-layer MAC Protocol in wireless Sensor Networks (무선 센서 네트워크에서 QoS를 인지하는 Cross-layer MAC 프로토콜)

  • Park, Hyun-Joo;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2811-2817
    • /
    • 2010
  • In this paper we propose the QAC-MAC that supports Quality of Service(QoS) and saves energy resources of the sensor node, and hence prolonging the lifetime of the sensor network with multiple sink nodes. Generally, the nodes nearest to the sink node often experience heavy congestion since all data is forwarded toward the sink through those nodes. So this critically effects on the delay-constraint data traffics. QAC-MAC uses a hybrid mechanism that adapts scheduled scheme for medium access and scheduling and unscheduled scheme based on TDMA for no data collision transmission. Generally speaking, characteristics of the real-time traffic with higher priority tends to be bursty and has same destination. QAC-MAC adapts cross-layer concept to rearrange the data transmission order in each sensor node's queue, saves energy consumption by allowing few nodes in data transmission, and prolongs the network lifetime.

Mobile Sink Data Gathering through Clustering (클러스터링을 통한 모바일 싱크 데이터 수집)

  • Park, Jang-Su;Ahn, Byoung-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.5
    • /
    • pp.79-85
    • /
    • 2009
  • A sink node and its neighbor nodes spend more energy than other nodes since a stationary sink node collects data from wireless sensor networks(WSNs). For larger WSNs, the unbalanced energy of nodes causes the operation of WSNs to stop rapidly. This paper proposes a data gathering method by adapting the mobile sink to prolong the life time of large WSNs. After partitioning a network into several clusters, a mobile sink visits each cluster and collects data from it. An efficient algorithm is proposed to improve the energy efficiency by delivering the message from the mobile sink to the cluster head as well as to reduce the data gathering delay, which is the disadvantage of the mobile sink. Also, The algorithm is analyzed for the energy consumption and the data gathering delay. The validity of the ananlysis result is confirmed by the simulation.

Adaptive Data Aggregation and Compression Scheme for Wireless Sensor Networks with Energy-Harvesting Nodes

  • Jeong, Semi;Kim, Hyeok;Noh, Dong Kun;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.115-122
    • /
    • 2017
  • In this paper, we propose an adaptive data aggregation and compression scheme for wireless sensor networks with energy-harvesting nodes, which increases the amount of data arrived at the sink node by efficient use of the harvested energy. In energy-harvesting wireless sensor networks, sensor nodes can have more than necessary energy because they harvest energy from environments continuously. In the proposed scheme, when a node judges that there is surplus energy by estimating its residual energy, the node compresses and transmits the aggregated data so far. Conversely, if the residual energy is estimated to be depleted, the node turns off its transceiver and collects only its own sensory data to reduce its energy consumption. As a result, this scheme increases the amount of data collected at the sink node by preventing the blackout of relay nodes and facilitating data transmission. Through simulation, we show that the proposed scheme suppresses the occurrence of blackout nodes and collect the largest amount of data at the sink node compared to previous schemes.

Balanced Cluster-based Multi-hop Routing in Sensor Networks (센서 네트워크의 균등분포 클러스터 기반 멀티홉 라우팅)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.910-917
    • /
    • 2016
  • Sensors have limited resources in sensor networks, so efficient use of energy is important. Representative clustering methods, LEACH, LEACHC, TEEN generally use direct transmission methods from cluster headers to the sink node to pass collected data. However, the communication distance of the sensor nodes at low cost and at low power is not long, it requires a data transfer through the multi-hop to transmit data to the sink node. In the existing cluster-based sensor network studies, cluster process and route selection process are performed separately in order to configure the routing path to the sink node. In this paper, in order to use the energy of the sensor nodes that have limited resources efficiently, a cluster-based multi-hop routing protocol which merges the clustering process and routing process is proposed. And the proposed method complements the problem of uneven cluster creation that may occur in probabilistic cluster methods and increases the energy efficiency of whole sensor nodes.

Simple Relay Selection for Wireless Network Coding System

  • Kim, Jang-Seob;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.310-313
    • /
    • 2011
  • Broadcasting nature of wireless communications makes it possible to apply opportunistic network coding (OPNC) by overhearing transmitted packets from a source to sink nodes. However, it is difficult to apply network coding to the topology of multiple relay and sink nodes. We propose to use relay node selection, which finds a proper node for network coding since the OPNC alone in the topology of multiple relays and sink nodes cannot guarantee network coding gain. The proposed system is a novel combination of wireless network coding and relay selection, which is a key contribution of this paper. In this paper, with the consideration of channel state and potential network coding gain, we propose relay node selection techniques, and show performance gain over the conventional OPNC and a channel-based selection algorithm in terms of average system throughput.

  • PDF

Clustering Algorithm to Equalize the Energy Consumption of Neighboring Node with Sink in Wireless Sensor Networks (무선 센서 네트워크에서 싱크 노드와 인접한 노드의 균등한 에너지 소모를 위한 클러스터링 알고리즘)

  • Jung, Jin-Wook;Jin, Kyo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.465-468
    • /
    • 2008
  • Clustering techniques in wireless sensor networks is developed to minimize the energy consumption of node, show the effect that increases the network lifetime. Existing clustering techniques proposed the method that increases the network lifetime equalizing each node's the energy consumption by rotating the role of CH(Cluster Head), but these algorithm did not present the resolution that minimizes the energy consumption of neighboring nodes with sink. In this paper, we propose the clustering algorithm that prolongs the network lifetime by not including a part of nodes in POS(Personal Operating Space) of the sink in a cluster and communicating with sink directly to reduce the energy consumption of CH closed to sink.

  • PDF

A Forwarder Based Temperature Aware Routing Protocol in Wireless Body Area Networks

  • Beom-Su Kim;Ki-Il Kim;Babar Shah;Sana Ullah
    • Journal of Internet Technology
    • /
    • v.20 no.4
    • /
    • pp.1157-1166
    • /
    • 2019
  • A Wireless Body Area Network (WBAN) allows the seamless integration of miniaturized sensor nodes in or around a human body, which may cause damage to the surrounding body issue due to high temperature. Although various temperature aware routing protocols have been proposed to prevent temperature rise of sensor nodes, most of them accommodate single traffic transmission with no mobility support. We propose a Forwarder based Temperature Aware Routing Protocol (FTAR) that supports multiple traffic transmission for normal and critical data. Normal data is forwarded directly to the sink through forwarding nodes which are selected among mobile nodes attached to the arms and legs, while critical data is forwarded to the sink through static nodes attached to fixed body parts with no mobility. We conduct extensive simulations of FTAR, and conclude that FTAR has good performance in terms of hot spot generation ratio, hot spot duration time, and packet delivery ratio.