• Title/Summary/Keyword: Singular value decomposition (SVD)

Search Result 220, Processing Time 0.027 seconds

Effect of Ground Roll Suppression Based on Karhunen-Loeve Transform (카루넨-루베 변환을 이용한 탄성파 그라운드 롤 억제 효과)

  • Jang, Seonghyung;Lee, Donghoon
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.177-185
    • /
    • 2019
  • Ground roll is a surface wave which is usually observed in the land seismic data. It is one of the typical coherent noise. During the reflection data processing, ground roll is removed because it is considered as noise. This removal process often causes the loss of reflection signals if the ground roll overlaps reflection signals. In this study, we look over Karhunen-Loeve Transform (KLT) and analyze its effects to suppress the ground roll appropriately while reducing the reflection loss. Numerical tests in homogeneous elastic media show that the ground roll has been properly rejected. However, the field data application reveals that there is no significant suppression of ground roll when compared to band-pass filtering. This can be considered that it is hard to calculate horizontally aligned gathers in the field data because the ground roll contains a wide range of frequency bands. On the contrary, the result of singular value decomposition (SVD) filtering shows that the ground roll has been significantly reduced. It is thought that the SVD filtering performs better in the ground roll suppression than KLT because it is easy to calculate the horizontally aligned gathers in the SVD filtering.

Improvement of Small Baseline Subset (SBAS) Algorithm for Measuring Time-series Surface Deformations from Differential SAR Interferograms (차분 간섭도로부터 지표변위의 시계열 관측을 위한 개선된 Small Baseline Subset (SBAS) 알고리즘)

  • Jung, Hyung-Sup;Lee, Chang-Wook;Park, Jung-Won;Kim, Ki-Dong;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.165-177
    • /
    • 2008
  • Small baseline subset (SBAS) algorithm has been recently developed using an appropriate combination of differential interferograms, which are characterized by a small baseline in order to minimize the spatial decorrelation. This algorithm uses the singular value decomposition (SVD) to measure the time-series surface deformation from the differential interferograms which are not temporally connected. And it mitigates the atmospheric effect in the time-series surface deformation by using spatially low-pass and temporally high-pass filter. Nevertheless, it is not easy to correct the phase unwrapping error of each interferogram and to mitigate the time-varying noise component of the surface deformation from this algorithm due to the assumption of the linear surface deformation in the beginning of the observation. In this paper, we present an improved SBAS technique to complement these problems. Our improved SBAS algorithm uses an iterative approach to minimize the phase unwrapping error of each differential interferogram. This algorithm also uses finite difference method to suppress the time-varying noise component of the surface deformation. We tested our improved SBAS algorithm and evaluated its performance using 26 images of ERS-1/2 data and 21 images of RADARSAT-1 fine beam (F5) data at each different locations. Maximum deformation amount of 40cm in the radar line of sight (LOS) was estimated from ERS-l/2 datasets during about 13 years, whereas 3 cm deformation was estimated from RADARSAT-1 ones during about two years.

Strategy of Multistage Gamma Knife Radiosurgery for Large Lesions (큰 병변에 대한 다단계 감마나이프 방사선수술의 전략)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.801-809
    • /
    • 2019
  • Existing Gamma Knife Radiosurgery(GKRS) for large lesions is often conducted in stages with volume or dose partitions. Often in case of volume division the target used to be divided into sub-volumes which are irradiated under the determined prescription dose in multi-sessions separated by a day or two, 3~6 months. For the entire course of treatment, treatment informations of the previous stages needs to be reflected to subsequent sessions on the newly mounted stereotactic frame through coordinate transformation between sessions. However, it is practically difficult to implement the previous dose distributions with existing Gamma Knife system except in the same stereotactic space. The treatment area is expanding because it is possible to perform the multistage treatment using the latest Gamma Knife Platform(GKP). The purpose of this study is to introduce the image-coregistration based on the stereotactic spaces and the strategy of multistage GKRS such as the determination of prescription dose at each stage using new GKP. Usually in image-coregistration either surgically-embedded fiducials or internal anatomical landmarks are used to determine the transformation relationship. Author compared the accuracy of coordinate transformation between multi-sessions using four or six anatomical landmarks as an example using internal anatomical landmarks. Transformation matrix between two stereotactic spaces was determined using PseudoInverse or Singular Value Decomposition to minimize the discrepancy between measured and calculated coordinates. To evaluate the transformation accuracy, the difference between measured and transformed coordinates, i.e., ${\Delta}r$, was calculated using 10 landmarks. Four or six points among 10 landmarks were used to determine the coordinate transformation, and the rest were used to evaluate the approaching method. Each of the values of ${\Delta}r$ in two approaching methods ranged from 0.6 mm to 2.4 mm, from 0.17 mm to 0.57 mm. In addition, a method of determining the prescription dose to give the same effect as the treatment of the total lesion once in case of lesion splitting was suggested. The strategy of multistage treatment in the same stereotactic space is to design the treatment for the whole lesion first, and the whole treatment design shots are divided into shots of each stage treatment to construct shots of each stage and determine the appropriate prescription dose at each stage. In conclusion, author confirmed the accuracy of prescribing dose determination as a multistage treatment strategy and found that using as many internal landmarks as possible than using small landmarks to determine coordinate transformation between multi-sessions yielded better results. In the future, the proposed multistage treatment strategy will be a great contributor to the frameless fractionated treatment of several Gamma Knife Centers.

The Effect of S130A Mutant of pharaonis Halorhodopsin on Ability of Chloride Binding and Photocycle

  • Sato, Maki;Kikukawa, Takashi;Araiso, Tsunehisa;Okita, Hirotaka;Shimono, Kazumi;Kamo, Naoki;Demura, Makoto;Nitta, Katsutoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.308-310
    • /
    • 2002
  • Bacteriorhodopsin (bR) and halorhodopsin (hR), which exist in the membrane of Halobacterium salinarum, are light-driven ion pumps. In spite of high similarity of primary and tertiary structures between bR and hR, these membrane proteins transport different ions, proton and chloride, in the opposite direction. From alignment of the amino acid sequences, Thr-89 of bR is homologous to Ser-l15 of hR from Halobacterium salinarum (shR). X-ray structure of shR has revealed that OH group of this residue directly interacts with CI$\^$-/ Thus, Ser-lI5 of shR is expected to play an important role in CI$\^$-/ binding and transport. In this study, we expressed wild type hR from Natronobacterium pharaonis (PhR) and Sl30A, which corresponds to Ser-l15 of shR, in E. coli in order to clarify binding affinity of chloride ion and photocycle reactions. From the titration with CI$\^$-/, affinity of Sl30A became quite lower than that of WT (WT 6 mM, Sl30A 89 mM). Furthermore, from the flash photolysis with pulse laser of λ$\_$max/ at 532 nm, the reaction rate of SI30A from 0 intermediate to hR ground state was found to become apparently slower than that of WT. The singular value decomposition (SVD) and global fitting analyses of the photocycles were performed to identify all photointermediates and determine the reaction rates.

  • PDF

Damage detection in truss structures using a flexibility based approach with noise influence consideration

  • Miguel, Leandro Fleck Fadel;Miguel, Leticia Fleck Fadel;Riera, Jorge Daniel;Menezes, Ruy Carlos Ramos De
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.625-638
    • /
    • 2007
  • The damage detection process may appear difficult to be implemented for truss structures because not all degrees of freedom in the numerical model can be experimentally measured. In this context, the damage locating vector (DLV) method, introduced by Bernal (2002), is a useful approach because it is effective when operating with an arbitrary number of sensors, a truncated modal basis and multiple damage scenarios, while keeping the calculation in a low level. In addition, the present paper also evaluates the noise influence on the accuracy of the DLV method. In order to verify the DLV behavior under different damages intensities and, mainly, in presence of measurement noise, a parametric study had been carried out. Different excitations as well as damage scenarios are numerically tested in a continuous Warren truss structure subjected to five noise levels with a set of limited measurement sensors. Besides this, it is proposed another way to determine the damage locating vectors in the DLV procedure. The idea is to contribute with an alternative option to solve the problem with a more widespread algebraic method. The original formulation via singular value decomposition (SVD) is replaced by a common solution of an eigenvector-eigenvalue problem. The final results show that the DLV method, enhanced with the alternative solution proposed in this paper, was able to correctly locate the damaged bars, using an output-only system identification procedure, even considering small intensities of damage and moderate noise levels.

Compuationally Efficient Propagator Method for DoA with Coprime Array (서로소 배열에서 프로퍼게이터 방법 기반의 효율적인 도래각 추정 기법)

  • Byun, Bu-Guen;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.258-264
    • /
    • 2016
  • In this paper, we propose a computationally efficient direction of arrival (DoA) estimation algorithm based on propagator method with non-uniform array. While the co-prime array techniques can improve the resolution of DoA, they generally lead to high computational complexity as the length of the coarray aperture. To reduce the complexity we use the propagator method that does not require singular value decomposition (SVD). Through simulations, we compare MUSIC with uniform lineary array, propagator method with uniform linear array, MUSIC with co-prime array, and the proposed scheme and observe that the performance of the proposed scheme is significantly better than MUSIC or propagator method with uniform linear array while it is slightly worse than computationally much more expensive co-prime array MUSIC scheme.

Multiple Targets Detection by using CLEAN Algorithm in Matched Field Processing (정합장처리에서 CLEAN알고리즘을 이용한 다중 표적 탐지)

  • Lim Tae-Gyun;Lee Sang-Hak;Cha Young-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1545-1550
    • /
    • 2006
  • In this paper, we propose a method for applying the CLEAN algorithm to an minimum variance distortionless response(MVDR) to estimate the location of multiple targets distributed in the ocean. The CLEAN algorithm is easy to implement in a linear processor, yet not in a nonlinear processor. In the proposed method, the CSDM of a Dirty map is separated into the CSDM of a Clean beam and the CSDM of the Residual, then an individual ambiguity surface(AMS) is generated. As such, the CLEAN algorithm can be applied to an MVDR, a nonlinear processor. To solve the ill-conditioned problem related to the matrix inversiion by an MVDR when using the CLEAN algorithm, Singular value decomposition(SVD) is carried out, then the reciprocal of small eigenvalues is replaced with zero. Experimental results show that the proposed method improves the performance of an MVDR.

Piezoelectric impedance based damage detection in truss bridges based on time frequency ARMA model

  • Fan, Xingyu;Li, Jun;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.501-523
    • /
    • 2016
  • Electromechanical impedance (EMI) based structural health monitoring is performed by measuring the variation in the impedance due to the structural local damage. The impedance signals are acquired from the piezoelectric patches that are bonded on the structural surface. The impedance variation, which is directly related to the mechanical properties of the structure, indicates the presence of local structural damage. Two traditional EMI-based damage detection methods are based on calculating the difference between the measured impedance signals in the frequency domain from the baseline and the current structures. In this paper, a new structural damage detection approach by analyzing the time domain impedance responses is proposed. The measured time domain responses from the piezoelectric transducers will be used for analysis. With the use of the Time Frequency Autoregressive Moving Average (TFARMA) model, a damage index based on Singular Value Decomposition (SVD) is defined to identify the existence of the structural local damage. Experimental studies on a space steel truss bridge model in the laboratory are conducted to verify the proposed approach. Four piezoelectric transducers are attached at different locations and excited by a sweep-frequency signal. The impedance responses at different locations are analyzed with TFARMA model to investigate the effectiveness and performance of the proposed approach. The results demonstrate that the proposed approach is very sensitive and robust in detecting the bolt damage in the gusset plates of steel truss bridges.

High Resolution 3D Magnetic Resonance Fingerprinting with Hybrid Radial-Interleaved EPI Acquisition for Knee Cartilage T1, T2 Mapping

  • Han, Dongyeob;Hong, Taehwa;Lee, Yonghan;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.141-155
    • /
    • 2021
  • Purpose: To develop a 3D magnetic resonance fingerprinting (MRF) method for application in high resolution knee cartilage PD, T1, T2 mapping. Materials and Methods: A novel 3D acquisition trajectory with golden-angle rotating radial in kxy direction and interleaved echo planar imaging (EPI) acquisition in the kz direction was implemented in the MRF framework. A centric order was applied to the interleaved EPI acquisition to reduce Nyquist ghosting artifact due to field inhomogeneity. For the reconstruction, singular value decomposition (SVD) compression method was used to accelerate reconstruction time and conjugate gradient sensitivity-encoding (CG-SENSE) was performed to overcome low SNR of the high resolution data. Phantom experiments were performed to verify the proposed method. In vivo experiments were performed on 6 healthy volunteers and 2 early osteoarthritis (OA) patients. Results: In the phantom experiments, the T1 and T2 values of the proposed method were in good agreement with the spin-echo references. The results from the in vivo scans showed high quality proton density (PD), T1, T2 map with EPI echo train length (NETL = 4), acceleration factor in through plane (Rz = 5), and number of radial spokes (Nspk = 4). In patients, high T2 values (50-60 ms) were seen in all transverse, sagittal, and coronal views and the damaged cartilage regions were in agreement with the hyper-intensity regions shown on conventional turbo spin-echo (TSE) images. Conclusion: The proposed 3D MRF method can acquire high resolution (0.5 mm3) quantitative maps in practical scan time (~ 7 min and 10 sec) with full coverage of the knee (FOV: 160 × 160 × 120 mm3).

A Compensation Scheme of Frequency Selective IQ Mismatch for Radar Systems (레이더 시스템을 위한 주파수 선택적 IQ 불일치 보상 기법)

  • Ryu, Yeongbin;Heo, Je;Son, Jaehyun;Choi, Mungak;Oh, Hyukjun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.565-571
    • /
    • 2021
  • In this paper, a compensation scheme of frequency selective IQ mismatch for high-performance radar systems based on commercial RFIC's is proposed. Besides, an optimization model and its solution based on the dimension reduction scheme using singular value decomposition are also proposed to design the optimal IQ mismatch compensation digital filter with complex coefficients. The performance of the proposed method had been analyzed through experiments using the IQ mismatch measurement and compensation system implemented on an FPGA board with a target RFIC and compared with the previous method. The experiment result showed a performance improvement of the proposed method over the existing one without noticeable increments in complexities. These performance analysis results showed that the limitation of using commercial RFIC's in high-performance radar systems due to the undesirable maximum SNR cap caused by their IQ mismatches could be overcome by employing the proposed method.