• Title/Summary/Keyword: Single-tooth

Search Result 404, Processing Time 0.022 seconds

CONFOCAL LASER SCANNING MICROSCOPIC MORPHOLOGY OF DENTIN-RESIN INTERFACE AND ITS RELATIONSHIP WITH SHEAR BOND STRENGTH (상아질-레진 계면의 공초점 현미경적 형태 및 전단결합강도와의 관계)

  • Choi, Nak-Won;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.310-321
    • /
    • 1999
  • In this in vitro study, confocal laser scanning microscopic morphology of dentin-resin interface and its relationship to shear bond strength were investigated after the exposed dentin surfaces were treated with 3 different kinds of dentin adhesive systems[three-step; Scotchbond Multi-Purpose Plus(SMPP), self-priming bonding resin; Single Bond(SB), self-etching primer; Clearfil Liner Bond 2(LB2)]. 52 extracted human molar teeth without caries and/or restorations. The experimental teeth were randomly divided into three groups of seventeen teeth each. In five teeth of each group, class V cavities(depth: 1.5mm) with 900 cavosurface angles were prepared at the cementoenamel junction on buccal and lingual surfaces. Bonding resins of each dentin adhesive system were mixed with rhodamine B. Primer of SMPP was mixed with fluorescein. In group 1. the exposed dentin was conditioned with etchant, applied with above primer and bonding resin of SMPP. In group 2, with etchant and self-priming bonding agent of SB. In group 3, with self-etching primer and bonding agent of LB2. After treatment with dentin adhesive systems, composite resin were applied and photocured. The experimental teeth were cut longitudinally through the center line of restoration and grounded so that about $90{\mu}m$-thick wafers of buccolingually orientated dentin were obtained. And, $70{\sim}80{\mu}m$-thick wafers sectioned horizontally, thus presenting a dentinal tubules at 900 to the cut surface of a remaining tooth, were obtained. Primer of SMPP mixed with rhodamine B was applied to these wafers. Confocal laser scanning microscopic investigations of these wafers were done within of 24 hours after treatment. To measure shear bond strength, the remaining twelve teeth of each group were grounded horizontally below the dentinoenamel junction, so that no enamel remained. After applying dentin adhesive systems on the dentin surface, composite was applied in the shape of cylinder. The cylinder was 5mm in diameter, and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. It was concluded as follows ; 1. Hybrid layer of SMPP(mean: $4.56{\mu}m$) was thicker than that of any other groups. This value was not statistically significant thicker than that of SB(mean: $3.41{\mu}m$, p>0.05), and significant thicker than that of LB2(mean: $1.56{\mu}m$, p<0.05). There was a statistical difference between SB and LB2(p<0.05). 2. Although there were variations in the length of resin tag even in a sample, and in a group, most samples in SMPP and SB showed resin tags extending above $20{\mu}m$. But samples in LB2 showed resin tags of $10{\mu}m$ at best. 3. Besides primer's infiltration into demineralized peritubular dentin and dentinal tubules, fluorophore of primer was detected in the lateral branches of dentinal tubules. 4. All groups demonstrated statistically significant differences from one another(p<0.05), with shear bond strengths given in descending order as follows: SMPP(18.3MPa), SB(16.0MPa) and LB2(12.4MPa). 5. LB2 having thinnest hybrid layer($1.56{\mu}m$) showed the lowest shear bond strength(12.4MPa).

  • PDF

Investigation of Rock Slope Failures based on Physical Model Study (모형실험을 통한 암반사면의 파괴거동에 대한 연구)

  • Cho, Tae-Chin;Suk, Jae-Uk;Lee, Sung-Am;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.447-457
    • /
    • 2008
  • Laboratory tests for single plane sliding were conducted using the model rock slope to investigate the cut slope deformability and failure mechanism due to combined effect of engineering characteristics such as angle of sliding plane, water force, joint roughness and infillings. Also the possibility of prediction of slope failure through displacement monitoring was explored. The joint roughness was prepared in forms of saw-tooth type having different roughness specifications. The infillings was maintained between upper and lower roughness plane from zero to 1.2 times of the amplitude of the surface projections. Water force was expressed as the percent filling of tension crack from dry (0%) to full (100%), and constantly increased from 0% at the rate of 0.5%/min and 1%/min upto failure. Total of 50 tests were performed at sliding angles of $30^{\circ}$ and $35^{\circ}$ based on different combinations of joint roughness, infilling thickness and water force increment conditions. For smooth sliding plane, it was found that the linear type of deformability exhibited irrespective of the infilling thickness and water force conditions. For sliding planes having roughness, stepping or exponential types of deformability were predominant under condition that the infilling thickness is lower or higher than asperity height, respectively. These arise from the fact that, once the infilling thickness exceeds asperities, strength and deformability of the sliding plane is controlled by the engineering characteristics of the infilling materials. The results obtained in this study clearly show that the water force at failure was found to increase with increasing joint roughness, and to decrease with increasing filling thickness. It seems possible to estimate failure time using the inverse velocity method for sliding plane having exponential type of deformability. However, it is necessary to estimate failure time by trial and error basis to predict failure of the slope accurately.

THE COMPARISON OF DIFFERENT CANAL IRRIGATION METHODS TO PREVENT REACTION PRECIPITATE BETWEEN SODIUM HYPOCHLORITE AND CHLORHEXIDINE (차아염소산나트륨과 클로르헥시딘의 반응침전물 형성방지를 위한 여러 가지 근관세척 방법의 비교)

  • Choi, Moon-Sun;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this study was to compare the different canal irrigation methods to prevent the formation of precipitate between sodium hypochlorite (NaOCl) and chlorhexidine (CHX). Extracted 50 human single-rooted teeth were used. The root canals were instrumented using NiTi rotary file (Profile .04/#40) with 2.5% NaOCl and 17% EDTA as irrigants. Teeth were randomly divided into four experimental groups and one control group as follows; Control group: 2.5% NaOCl only, Group 1: 2.5% NaOCl + 2% CHX, Group 2: 2.5% NaOCl + paper points + 2% CHX, Group 3: 2.5% NaOCl + preparation with one large sized-file + 2% CHX, Group 4: 2.5% NaOCl +95% alcohol+ 2% CHX. The teeth were split in bucco-lingual aspect and the specimens were observed using Field Emission Scanning Electron Microscope. The percentages of remaining debris and patent dentinal tubules were determined. Statistical analysis was performed with one-way analysis of variance (ANOVA). Energy Dispersive x-ray Spectroscopy was used for analyzing the occluded materials in dentinal tubule for elementary analysis. There were no significant differences in percentage of remaining debris and patent tubules between all experimental groups at all levels (p > .05). In elementary analysis, the most occluded materials in dentinal tubule were dentin debris. NaOCl/CHX precipitate was detected in one tooth specimen of Group 1. In conclusion, there were no significant precipitate on root canal, but suspected material was detected on Group 1. The irrigation system used in this study could be prevent the precipitate formation.

Accuracy of implant digital scans with different intraoral scanbody shapes and library merging according to different oral exposure height (구내 스캔바디의 형태에 따른 임플란트의 디지털 스캔 정확도 및 구강 내 노출 높이에 따른 라이브러리 중첩 정확도 비교 연구)

  • Jeong, Byungjoon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the accuracy of digital scans of implants according to different shapes of scanbodies, and to compare the accuracy of library merging according to different oral exposure height. Materials and methods: A master model with a single tooth edentulous site was prepared. For the first experiment, three types of intraoral scanbodies were prepared, divided into three groups, and the following experiments were conducted for each group: An internal hex implant was placed. The master model with the scanbody connected was scanned with a model scanner, and a master reference file (control group) was created. 10 files (experimental group) were created by performing 10 consecutive scans with an intraoral scanner. After superimposing the control and experimental groups, the following values were calculated: 1) Distance deviation of a designated point on the scanbody 2) Angle deviation of the major axis of the scanbody. For the second experiment, the scanbody scan data were prepared in 6 different heights. Library files were merged with each of the scan data. The distance and angular deviation were calculated using the 7 mm scan data as control group. Results: In the first experiment, there were no significant differences between A and B (P=.278), B and C (P=.568), and C and A (P=.711) in the distance deviations. There were no significant differences between A and B (P=.568), B and C (P=.546), and C and A (P=.112) in the angular deviations. Also, the scanbody showed significantly higher library merging accuracy in the groups with high oral exposure height (P<.5). Conclusion: There were no significant differences in scan accuracy according to the different shapes of scanbodies, and the accuracy of library merging increased according to exposure height of the scanbody in the oral cavity.