Previous studies showed that Cdc7 kinase of Schizosaccharomyces pombe phosphorylated the minichromosome maintenance (Mcm) complex efficiently in the presence of spMcm10 protein. The biochemical properties of the phosphorylated Mcm complexes were examined to understand the activation mechanism of the Mcm complex by Cdc7 kinase. The phosphorylation of Mcm complex in the presence of spMcm10 by Cdc7 kinase did not affect the stability of the Mcm complex containing all six subunits, and the changes in the sedimentation properties were not observed after the phosphorylation. The reconstitution of the Mcm complex using the purified proteins showed that the phosphorylation of Mcm2 proteins did not affect the interactions between Mcm proteins. The phosphorylation of the Mcm2-7 complex at the same condition also did not activate the other biochemical activities such as DNA helicase and single stranded (ss) DNA binding activities. On the other hand, spMcm10 protein that was used for the stimulation of Mcm phosphorylation showed single stranded DNA binding activity, and inhibited the DNA helicase activity of the Mcm4/6/7 complex. These inhibitory effects were reduced by the addition of Cdc7 kinase, suggesting that the phosphorylation by Cdc7 kinase decreased the interactions between spMcm10 and the Mcm complex. Taken together, these results suggested that the phosphorylation by Cdc7 kinase alone is not sufficient for the remodeling and the activation of the Mcm complex, and the additional factors or the phosphorylations might be required for the activation of the Mcm complex.
Proceedings of the Botanical Society of Korea Conference
/
1987.07a
/
pp.149-155
/
1987
Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.
Transcription termination of the human mitochondrial genome requires specific binding to termination factor mTERF. In this study, mTERF was produced in E. coli and purified by two-step chromatography. mTERF-binding DNA sequences were isolated from a pool of randomized sequences by the repeated selection of bound sequences by gel-mobility shift assay and polymerase chain reaction. Sequencing and comparison of the 23 isolated clones revealed a 16-bp consensus sequence of 5'-GTG$\b{TGGC}$AGANCCNGG-3' in the light-strand (underlined residues were absolutely conserved), which nicely matched the genomic 13-bp terminator sequence 5'-$\b{TGGC}$AGAGCCCGG-3'. Moreover, mTERF binding assays of heteroduplex and single-stranded DNAs showed mTERF recognized the light strand in preference to the heavy strand. The preferential binding of mTERF with the light-strand may explain its distinct orientation-dependent termination activity.
Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, is required for T7 DNA replication, recombination, and repair. T7 gene 2.5 protein has two distinctive domains, DNA binding and C-terminal domain, directly involved in protein-protein interaction. Gene 2.5 protein participates in the DNA replication of Bacteriophage T7, which makes this protein essential for the T7 growth and DNA replication. What gene 2.5 protein makes important at T7 growth and DNA replication is its binding affinity to single-stranded DNA and the protein-protein important at T7 DNA replication proteins which are essential for the T7 DNA synthesis. We have constructed pGST2.5(WT) encoding the wild-type gene 2.5 protein and pGST2.5$\Delta $21C lacking C-terminal 21 amino acid residues. The purified GST-fusion proteins, GST2.5(WT) and GST2.5(WT)$\Delta$21C, were used for whether the carboxyl-terminal domain participates in the protein-protein interactions or not. GST2.5(WT) and GST2.5$\Delta$21C showed the difference in the protein-protein interaction. GST2.5(WT) interacted with T7 DNA polymerase and gene 4 protein, but GST2.5$\Delta$21C did not interact with either protein. Secondly, GST2.5(WT) interacts with gene 4 proteins (helicase/primase) but not GST2.5$\Delta$21C. these results proved the involvement of the carboxyl-terminal domain of gene 2.5 protein in the protein-protein interaction. We clearly conclude that carboxy-terminal domain of gene 2.5 protein is firmly involved in protein-protein interactions in T7 replication proteins.
The replication protein A (RPA) plays a crucial role in DNA replication, recombination, and repair. RPA consists of 70, 32 and 14 kDa subunits and has high single-stranded DNA (ssDNA) binding affinity. The largest subunit, RPA70, mainly contributes to bind to ssDNA as well as interact with many cellular and viral proteins. In this study, we performed nuclear magnetic resonance experiments on the complex of the DNA binding domain A of human RPA70 (RPA70A) with ssDNA, d(CCCCC), at various pH, to understand the effect of pH on the ssDNA binding of RPA70A. The chemical shift perturbations of binding residues were most significant at pH 6.5 and they reduced with pH increment. This study provides valuable insights into the molecular mechanism of the ssDNA binding of human RPA.
In E. coli, chromosomal DNA associated with proteins is condensed into an organized structure known as nucleoid. Using a nitrocellulose filter binding assay to identify proteins forming nucleoid, a 21 kDa protein was purified from E. coli. The molecular weight of the purified protein was 21 kDa on SDS-polyactylamide gel electrophoresis and 24 kDa on gel permeation chromatography. A molecular weight of 21 kDa on SDS-polyacrylamide gel electrophoresis is unique among known proteins which are believed to be involved in the formation of nucleoid in E. coli. The 21 kDa protein nonspecifically binds to both double-stranded and single-stranded DNA. Sedimentation in a sucrose gradient revealed that the protein induced significant condensation of both supercoiled plasmid DNA and linear bacteriophage $\lambda$ DNA On the basis of quantitative Western-blot analysis, approximately 40,000 molecules of the protein were estimated to exist in an E. coli. The biochemical properties and cellular abundance of the 21 kDa protein suggest that this protein participates in the formation of nucleoid in E. coli.
Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.
The product of bacteriophage T7 gene 2.5 is a single-stranded DNA binding protein and plays an important role in T7 DNA replication, recombination, and repair. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth (Kim and Richardson, 1993). The C-terminal truncated gene 2.5 protein ($GP2.5-{\Delta}21C$) cannot substitute for wild-type gene 2.5 protein in vivo; suggesting that the C-terminal domain of gene 2.5 protein is essential for protein-protein interactions (Kim and Richardson, 1994; J. Biol. Chem. 269, 5070-5078). Truncated gene 2.5 proteins lacking 19 residues ($GP2.5-{\Delta}19N$) and 39 residues ($GP2.5-{\Delta}39N$) from the amino-terminal domain were constructed by in vitro mutagenesis. $GP2.5-{\Delta}19N$ can support the growth of T7 phage lacking gene 2.5 while $GP2.5-{\Delta}39N$ cannot substitute for wild-type gene 2.5 protein in vivo; however, its ability to bind to single-stranded DNA is not affected. These results clearly demonstrate that the 20~39 amino-terminal region of gene 2.5 protein is required for T7 growth in vivo but may not be involved in DNA binding activity.
Kim, Tae-Gyun;Heo, Seong-Dal;Ku, Ja-Kang;Ban, Chang-Ill
BMB Reports
/
v.42
no.1
/
pp.53-58
/
2009
The methyl-directed mismatch repair (MMR) mechanism has been extensively studied in vitro and in vivo, but one of the difficulties in determining the biological relationships between the MMR-related proteins is the tendency of MutL to self-aggregate. The properties of a stable MutL homologue were investigated using a thermostable MutL (TmL) from Thermotoga maritima MSB8 and whose size exclusion chromatographic and crosslinking analyses were compatible with a dimeric form of TmL. TmL underwent conformational changes in the presence of nucleotides and single-stranded DNA (ssDNA) with ATP binding not requiring ssDNA binding activity of TmL, while ADPnP-stimulated TmL showed a high ssDNA binding affinity. Finally, TmL interacted with the T. maritima MutS (TmS), increasing the affinity of TmS to mismatched DNA base pairs and suggesting that the role of TmL in the formation of a mismatched DNA-TmS complex may be a pivotal observation for the study of the initial MMR system.
Replication Protein A (RPA) is the eukaryotic single-stranded DNA binding protein. It involves in DNA replication, repair, and damage response. Among three subunits, RPA70 has a protein-protein binding domain (RPA70N) at the N-terminal. It has known that the domain recruits several damage response proteins to the damaged site. Also, it is suggested that there are more candidates that interact with RPA70N. Even though several studies performed on the structural aspects of RPA70N and its ligand binding, the backbone assignments of RPA70N is not available in public. In this study, we present the backbone assignments of RPA70N.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.