• Title/Summary/Keyword: Single-shot

Search Result 234, Processing Time 0.035 seconds

H13소재의 쇼트피닝과 이온질화에의한 표면경화

  • Jo, Gyun-Taek;Son, Seok-Won;Yu, Gwang-Chun;Lee, Yeong-Guk;Lee, Won-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.58-59
    • /
    • 2012
  • Surface hardening mechanism of H13 steel was investigated when ion niriding after shot peening process was applied. Severe plastic deformation induced nanocrystallized grains at surface region. Higher nitrogen concentration was achieved in ion nitrided specimen with shot peening treatment than in single nitrided specimen. The elemental mapping on chromium and nitrogen by TEM-EELs showed chromium dissolved in matrix enhanced bulk nitrogen diffusion at surface region. Higher nitrogen diffusion also caused lattice distortion. Nano-sized grains, higher nitrogen concentration, and lattice diffustion contributed to the surface hardening.

  • PDF

A HDR Algorithm for Single Image Based on Exposure Fusion Using Variable Gamma Coefficient (가변적 감마 계수를 이용한 노출융합기반 단일영상 HDR기법)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1059-1067
    • /
    • 2021
  • In this paper, a HDR algorithm for a single image is proposed using the exposure fusion, that adaptively calculates gamma correction coefficients according to the image distribution. Since typical HDR methods should use at least three images with different exposure values at the same scene, the main problem was that they could not be applied at the single shot image. Thus, HDR enhancements based on a single image using tone mapping and histogram modifications were recently presented, but these created some location-specific noises due to improper corrections. Therefore, the proposed algorithm calculates proper gamma coefficients according to the distribution of the input image and generates different exposure images which are corrected by the dark and the bright region stretching. A HDR image reproduction controlling exposure fusion weights among the gamma corrected and the original pixels is presented. As the result, the proposed algorithm can reduce certain noises at both the flat and the edge areas and obtain subjectively superior image quality to that of conventional methods.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

The Surface Recrystallization Behavior of Single Crystal CMSX-2 (단결정 CMSX-2의 표면재결정 거동)

  • Jo, Chang-Yong;Na, Yeong-Sang;Kim, Hak-Min;Kim, Woo-Yeol;Bae, Cha-Hurn;Lee, Sang-Lae
    • 연구논문집
    • /
    • s.23
    • /
    • pp.15-27
    • /
    • 1993
  • The single crystal specimens were solidified by modified Bridgeman method. The surface recrystallized single crystal specimens were prepared by shot peening followed by heat treatment. The surface recrystallization begins at the dendrite cores on the surface. The recrystallized grains grew into the inner side of the specimen. The growth of recrystallized grains was inhibited by the pores and eutectic phases. The primary $\gamma'$ phases were dissolved at the recrystallized grain boundaries during the grain growth. The grain growth of recrystallized grains was similar to the cellular type transformation. No orientation relationships were found bewteen the recrystallized grains and the parent phase.

  • PDF

Improved Antigen Delivery Systems with PLGA Microsphere for a Single-Step Immunization (PLGA 미립구를 이용한 새로운 단회 접종 항원 전달 시스템의 개발)

  • Yoon, Mi-Kyeong;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • A promising approach to the development of a new single-step vaccine, which would eliminate the requirement for multiple injections, involves the encapsulation of antigens into microspheres. Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres gave us a bright insight for controling antigen release in a pulsatile fashion, thereby mimicking two or tree boosting injections. However, in spite of the above merits, the level of immunization induced by a single-shot vaccination is often lower tan two doses of alum-adsorbed antigen. Therefore, optima modification of the microsphere is essential for the development of single-step vaccines. In the review, we discuss the stability of antigen in microsphere, safety and non-toxic in human and encapsulation technology. Also, we attempted to outline relevant physicochemical properties on the immunogenicity of microsphere vaccine and attainment of pulsatile release pater by combination of different microsphere, as well as to analyze immunological data associated with antigen delivery by microsphere. Although a lot of variables are related to the optimized microsphere formulation, we could conclude that judicious choice of proper polymer type, adjustment of particles size, and appropriate immunization protocol along with a suitable adjuvant might be a crucial factor for the generation of long-lasting immune response from a single-step vaccine formulation employing PLGA microsphere.

Interleaved Spiral Scan Imaging (Interleaved 나선 주사 영상)

  • Ahn, C.B.;Kim, H.J.;Shin, J.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.98-99
    • /
    • 1998
  • In this paper, an interleaved spiral scan imaging is investigated for an ultra fast MR imaging. The interleaved spiral technique has relative advantage over single shot spiral imaging with improved resolution and less inhomogeneity-related artifact. An improved reconstruction algorithm is devised with DC-offset correction. Some preliminary experimental results are shown at 1.0 Tesla and 3.0 Tesla whole body MRI system.

  • PDF

Common-path phase microscopy for lives cell imaging (살아있는 세포 영상획득을 위한 common-path phase microscopy)

  • Lee, Ji-Yong;Lee, Seung-Rak;Yang, W.Z.;Kim, Deok-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.273-274
    • /
    • 2008
  • We present a quantitative phase microscopy for live cells. This method uses the principles of common path inteferometry and single shot phase image. This system has the ability to measure live cells quantitatively with subnanometer path length stability and millisecond scale aquisition time.

  • PDF

Weighted Fast Adaptation Prior on Meta-Learning

  • Widhianingsih, Tintrim Dwi Ary;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.68-74
    • /
    • 2019
  • Along with the deeper architecture in the deep learning approaches, the need for the data becomes very big. In the real problem, to get huge data in some disciplines is very costly. Therefore, learning on limited data in the recent years turns to be a very appealing area. Meta-learning offers a new perspective to learn a model with this limitation. A state-of-the-art model that is made using a meta-learning framework, Meta-SGD, is proposed with a key idea of learning a hyperparameter or a learning rate of the fast adaptation stage in the outer update. However, this learning rate usually is set to be very small. In consequence, the objective function of SGD will give a little improvement to our weight parameters. In other words, the prior is being a key value of getting a good adaptation. As a goal of meta-learning approaches, learning using a single gradient step in the inner update may lead to a bad performance. Especially if the prior that we use is far from the expected one, or it works in the opposite way that it is very effective to adapt the model. By this reason, we propose to add a weight term to decrease, or increase in some conditions, the effect of this prior. The experiment on few-shot learning shows that emphasizing or weakening the prior can give better performance than using its original value.

DNN Based Multi-spectrum Pedestrian Detection Method Using Color and Thermal Image (DNN 기반 컬러와 열 영상을 이용한 다중 스펙트럼 보행자 검출 기법)

  • Lee, Yongwoo;Shin, Jitae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.361-368
    • /
    • 2018
  • As autonomous driving research is rapidly developing, pedestrian detection study is also successfully investigated. However, most of the study utilizes color image datasets and those are relatively easy to detect the pedestrian. In case of color images, the scene should be exposed by enough light in order to capture the pedestrian and it is not easy for the conventional methods to detect the pedestrian if it is the other case. Therefore, in this paper, we propose deep neural network (DNN)-based multi-spectrum pedestrian detection method using color and thermal images. Based on single-shot multibox detector (SSD), we propose fusion network structures which simultaneously employ color and thermal images. In the experiment, we used KAIST dataset. We showed that proposed SSD-H (SSD-Halfway fusion) technique shows 18.18% lower miss rate compared to the KAIST pedestrian detection baseline. In addition, the proposed method shows at least 2.1% lower miss rate compared to the conventional halfway fusion method.

Optimization of GEO-KOMPSAT-2 Apogee Engine Burn Plan (정지궤도복합위성 원지점엔진 분사계획 최적화 연구)

  • Park, Bongkyu;Choi, Jaedong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.90-97
    • /
    • 2016
  • GEO-KOMPSAT-2A and GEO-KOMPSAT-2B are under development by KARI to replace the COMS mission, and will be launched in 2018 and 2019, respectively. GEO-KOMPSAT-2 will be launched and injected into the GTO (Geostationary Transfer Orbit) by the Ariane V launcher. Once injected into the GTO, the satellites are transferred to the drift orbit by applying a series of apogee engine burns. The burn epoch time, duration, and intervals are selected such that the satellite is placed closest to the target drift longitude, or at the drift start longitude. For GEO-KOMPSAT-2, four or five LAE (Liquid Apogee Engine) burns will be applied for drift orbit injection. This paper establishes the GEO-KOMPSAT-2 LAE burn plan, considering predefined constraints and adjustments, taking into account the perturbing forces. Two approaches have been analyzed: the first is a single shot approach, whereas the other is an iteration based optimal solution. Optimal solution has been obtained using the Focusleop, a geostationary satellite LEOP tool.