• Title/Summary/Keyword: Single-radius

Search Result 269, Processing Time 0.022 seconds

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

Separation of the Heavy Metals by macrocycles- mediated Emulsion Liquid Membrane Systems (거대고리 화합물을 매질로한 에멀존 액체막게에 의한 중금속이온의 분리)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.61-72
    • /
    • 1993
  • Result of this study indicate that two criteria must be met in order to have effective macrocycle-mediated transport in these emulsionsystem. First, one must effective extraction of the post transition metals, $Cd^{2+}$. $Pb^{2+}$ and $Hg^{2+}$ , into toluene membrane. The effectiveness of this extraction is greatest if log K values for the metal-macrocycle interaction is large. Second, the ratio of the log K values for the metal ion-receiving phase to the metal ion-macrocycle interaction must be large enough to ensure quantitative stripping of the metal ion at the toluene phase interface. Control of the first step can be obtained by appropriate selection of macrocycle donor atom, substituents, and cavity radius. The second step can be controlled by selecting the proper complexing agent for inclusion in the receiving phase. The order of the transport, when using the several $A^-$ species such as $SCN^-$, $1^-$, $Br^-$ and $Cl^-$ is the order of the changing degree of solvation for $A^-$ and the transport of the metals is also affected by the control of concentration for receiving species because of solubility-differences. In this study, we can seperate each single metal ion from the mixture of $Cd^{2+}$, $Pb^{2+}$, and $Hg^{2+}$ ions by using the toluene membranes controlled by optimized conditions. Transport of the single metal is also very good, and alkaline and alkaline earth metals as interferences ions did not affect the seperation of the metals in this macrocycle-liquid membrances but transition metal ions were partially affected as interferences for the post transition metal ions.

  • PDF

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.

The effects of physical factors in SPECT (물리적 요소가 SPECT 영상에 미치는 영향)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.65-77
    • /
    • 1996
  • Using the 2-D and 3-D Hoffman brain phantom, 3-D Jaszczak phantom and Single Photon Emission Computed Tomography, the effects of data acquisition parameter, attenuation, noise, scatter and reconstruction algorithm on image quantitation as well as image quality were studied. For the data acquisition parameters, the images were acquired by changing the increment angle of rotation and the radius. The less increment angle of rotation resulted in superior image quality. Smaller radius from the center of rotation gave better image quality, since the resolution degraded as increasing the distance from detector to object increased. Using the flood data in Jaszczak phantom, the optimal attenuation coefficients were derived as 0.12cm$\^$-1/ for all collimators. Consequently, the all images were corrected for attenuation using the derived attenuation coefficients. It showed concave line profile without attenuation correction and flat line profile with attenuation correction in flood data obtained with jaszczak phantom. And the attenuation correction improved both image qulity and image quantitation. To study the effects of noise, the images were acquired for 1min, 2min, 5min, 10min, and 20min. The 20min image showed much better noise characteristics than 1min image indicating that increasing the counting time reduces the noise characteristics which follow the Poisson distribution. The images were also acquired using dual-energy windows, one for main photopeak and another one for scatter peak. The images were then compared with and without scatter correction. Scatter correction improved image quality so that the cold sphere and bar pattern in Jaszczak phantom were clearly visualized. Scatter correction was also applied to 3-D Hoffman brain phantom and resulted in better image quality. In conclusion, the SPECT images were significantly affected by the factors of data acquisition parameter, attenuation, noise, scatter, and reconstruction algorithm and these factors must be optimized or corrected to obtain the useful SPECT data in clinical applications.

  • PDF

An Empirical Study on the Improvement of In Situ Soil Remediation Using Plasma Blasting, Pneumatic Fracturing and Vacuum Suction (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화 개선 효과에 대한 실증연구)

  • Jae-Yong Song;Geun-Chun Lee;Cha-Won Kang;Eun-Sup Kim;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.85-103
    • /
    • 2023
  • The in-situ remediation of a solidified stratum containing a large amount of fine-texture material like clay or organic matter in contaminated soil faces limitations such as increased remediation cost resulting from decreased purification efficiency. Even if the soil conditions are good, remediation generally requires a long time to complete because of non-uniform soil properties and low permeability. This study assessed the remediation effect and evaluated the field applicability of a methodology that combines pneumatic fracturing, vacuum extraction, and plasma blasting (the PPV method) to improve the limitations facing existing underground remediation methods. For comparison, underground remediation was performed over 80 days using the experimental PPV method and chemical oxidation (the control method). The control group showed no decrease in the degree of contamination due to the poor delivery of the soil remediation agent, whereas the PPV method clearly reduced the degree of contamination during the remediation period. Remediation effect, as assessed by the reduction of the highest TPH (Total Petroleum Hydrocarbons) concentration by distance from the injection well, was uncleared in the control group, whereas the PPV method showed a remediation effect of 62.6% within a 1 m radius of the injection well radius, 90.1% within 1.1~2.0 m, and 92.1% within 2.1~3.0 m. When evaluating the remediation efficiency by considering the average rate of TPH concentration reduction by distance from the injection well, the control group was not clear; in contrast, the PPV method showed 53.6% remediation effect within 1 m of the injection well, 82.4% within 1.1~2.0 m, and 68.7% within 2.1~3.0 m. Both ways of considering purification efficiency (based on changes in TPH maximum and average contamination concentration) found the PPV method to increase the remediation effect by 149.0~184.8% compared with the control group; its average increase in remediation effect was ~167%. The time taken to reduce contamination by 80% of the initial concentration was evaluated by deriving a correlation equation through analysis of the TPH concentration: the PPV method could reduce the purification time by 184.4% compared with chemical oxidation. However, the present evaluation of a single site cannot be equally applied to all strata, so additional research is necessary to explore more clearly the proposed method's effect.

BVI PHOTOMETRIC STUDY OF THE OLD OPEN CLUSTER RUPRECHT 6

  • Kim, Sang Chul;Kyeong, Jaemann;Park, Hong Soo;Han, Ilseung;Lee, Joon Hyeop;Moon, Dae-Sik;Lee, Youngdae;Kim, Seongjae
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.79-92
    • /
    • 2017
  • We present a BV I optical photometric study of the old open cluster Ruprecht 6 using the data obtained with the SMARTS 1.0 m telescope at the CTIO, Chile. Its color-magnitude diagrams show the clear existence of the main-sequence stars, whose turn-off point is located around $V{\approx}18.45mag$ and $B-V{\approx}0.85mag$. Three red clump (RC) stars are identified at V = 16.00 mag, I = 14.41 mag and B - V = 1.35 mag. From the mean $K_s-band$ magnitude of RC stars ($K_s=12.39{\pm}0.21mag$) in Ruprecht 6 from 2MASS photometry and the known absolute magnitudes of the RC stars ($M_{K_S}=-1.595{\pm}0.025mag$), we obtain the distance modulus to Ruprecht 6 of $(m-M)_0=13.84{\pm}0.21mag$ ($d=5.86{\pm}0.60kpc$). From the ($J-K_s$) and (B - V ) colors of the RC stars, comparison of the (B - V ) and (V - I) colors of the bright stars in Ruprecht 6 with those of the intrinsic colors of dwarf and giant stars, and the PARSEC isochrone fittings, we derive the reddening values of E(B - V ) = 0.42 mag and E(V - I) = 0.60 mag. Using the PARSEC isochrone fittings onto the color-magnitude diagrams, we estimate the age and metallicity to be: $log(t)=9.50{\pm}0.10(t=3.16{\pm}0.82Gyr)$ and $[Fe/H]=-0.42{\pm}0.04dex$. We present the Galactocentric radial metallicity gradient analysis for old (age > 1 Gyr) open clusters of the Dias et al. catalog, which likely follow a single relation of $[Fe/H]=(-0.034{\pm}0.007)R_{GC}+(0.190{\pm}0.080)$ (rms = 0.201) for the whole radial range or a dual relation of $[Fe/H]=(-0.077{\pm}0.017)R_{GC}+(0.609{\pm}0.161)$ (rms = 0.152) and constant ([Fe/H] ~ -0.3 dex) value, inside and outside of RGC ~ 12 kpc, respectively. The metallicity and Galactocentric radius ($13.28{\pm}0.54kpc$) of Ruprecht 6 obtained in this study seem to be consistent with both of the relations.

The Technique of Estimating the Right-Turn Adjustment Factor (우회전 보정계수 산정기법)

  • Kim, Gyeong-Hwan;Kim, Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.73-84
    • /
    • 2001
  • Korean Highway Capacity Manual applies 7 adjustment factors to estimate saturation flows at signalized intersections. Among the adjustment factors, the right-turn adjustment factor uses equation hard to understand and requires complicated computing process comparing other adjustment factors. Thus. this study was conducted in order to suggest a new technique of estimating the right-turn adjustment factor which is easy to understand and simple to computer by having reasonable degree of accuracy. In this study the right-turn saturation flow ratios which are important in estimating the factor are suggested and the equation to estimate the volume of right-turn on red signal(RTOR) is developed based on observed data. The right-turn saturation flow rates can be estimated according to turning radius and number of lanes of crossing road dividing right-turn lanes into canalized and uncanalized lanes. The RTOR volume is estimated using the proportion of the time during which RTOR is possible to the whole time of red signal according to the through traffic volume per lane of the approach at signalized intersections. The technique of estimating the right-turn adjustment factor suggested in this study, which follows the HCM2000 of U.S. in principal, first judges the right-turn lane to be used exclusively for right-turn or not by employing the RTOR factor and the judging equation developed in this study. Next, if the right-turn lane is not exclusive right-turn lane, the shared right-turn lane is classified into single lane approach or multi lane approach. Thus, a total of three methods of estimating the right-turn adjustment factor to the three cases are suggested in this study.

  • PDF

Application of Universal Scaled Reduced Temperature Parameter to the Three-Arm Star Polystyrene (세팔 별모양 폴리스타이렌 사슬의 팽창에 대한 만능 환산 온도 파라미터의 적용)

  • ;;Ling Yun
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.255-264
    • /
    • 2003
  • Various chain sizes 3-arm star polystyrenes (PS, $M_{w}$=2.80$\times$10$^{5}$ , 2.49$\times$10$^{6}$ g/mol) in t-decalin solution were measured at the temperature range of 20~7$0^{\circ}C$ by means of viscometry and laser light scattering. In order to show universality in the expansion factor of 3-arm star polymer, it was expected that (N/ $R_{G,Br,o}$$^{2}$)$^{3}$2/$\tau$/$\tau$$_{C}$ would be used as an universal parameter, where $R_{G,Br,o}$ was the unperturbed radius of gyration of star PS. However, much better universality had been observed when (N/ $R_{G,Br,o}$$^{2}$)$^{3}$2/$\tau$/$\tau$$_{C}$ parameter of the linear PS was used even for the 3-arm star PS. It could be explained if branching effect had been already taken into account in the part of $\tau$/$\tau$$_{C}$(=[(Τ-Θ$_{Tc}$ )/Θ$_{Tc}$ ]/[(Θ$_{Tc}$$_{c}$)/ $T_{c}$]). Here N and Θ$_{Tc}$ stand for the number of monomer unit in a single polymer chain and a kind of theta temperature as the critical solution temperature $T_{c}$ of the infinite molecular weight, respectively.ely.y.ely.

An Analytical Study of the Effect of Inclined Angle of Road on Turn-over Accident of a High-speed Coach running on a Curved Road under Cross-wind Condition (횡풍이 작용하는 속도로의 회전구간에서 도로의 편경사각이 주행차량의 전복사고에 미치는 영향에 관한 분석연구)

  • Park, Hyeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.373-381
    • /
    • 2017
  • Kyeonggi Provincial Government is considering double decker bus service to solve the problem of heavy rush hour traffic. However, the height-to-width ratio is more than 1.16 times larger than that of a general high-speed single decker bus, and the center of gravity is higher. This could cause driving stability problems, such as turnover and breakaway from the lane, especially under strong side-wind conditions at high speed. In this numerical study, the driving characteristics of a model double decker bus were reviewed under side-wind and superelevation conditions at high driving speed. The rolling, pitching, and yawing moment of the model bus were calculated with CFD numerical simulation, and the results were compared to the recovery angular moments of the model bus to evaluate the dynamic stability under given driving conditions. As the model vehicle moves on a straight level road, it is stable under any side-wind conditions. However, on a curved road under side-wind conditions, it could reach unstable conditions dynamically. There is a chance that the bus will turn over when it moves on a curved road with a radius of gyration less than 100 m under side-wind (15 m/s). However, there is a very small chance of breakaway from the lane under any driving conditions.

Input Balun Design Method for CMOS Differential LNA (차동 저 잡음 증폭기의 입력 발룬 설계 최적화 기법)

  • Yoon, Jae-Hyuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.366-372
    • /
    • 2017
  • In this paper, the analysis of baluns that are inevitably required to design a differential low noise amplifier, The balun converts a single signal input from the antenna into a differential signal, which serves as an input to the differential amplifier. In addition, it protects the circuit from ESD(Electrostatic Discharge) coming through the antenna and helps with input matching. However, in the case of a passive balun used in general, since the AC signal is transmitted through electromagnetic coupling formed between two metal lines, it not only has loss without gain but also has the greatest influence on the total noise figure of the receiving end. Therefore, the design of a balun in a low-noise amplifier is very important, and it is important to design a balun in consideration of line width, line spacing, winding, radius, and layout symmetry that are necessary. In this paper, the factors to be considered for improving the quality factor of balun are summarized, and the tendency of variation of resistance, inductance, and capacitance of the balun according to design element change is analyzed. Based on the analysis results, it is proved that the design of input balun allows the design of low noise, high gain differential amplifier with gain of 24 dB and noise figure of 2.51 dB.