• Title/Summary/Keyword: Single-phase motor

Search Result 477, Processing Time 0.027 seconds

Development of Drive for BLDC Motor Using Resolver (레졸버를 이용한 BLDC 모터의 드라이브 개발)

  • Lee, G.Y.;Lee, C.H.;Kim, S.B.;Kwon, S.J.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.64-69
    • /
    • 1999
  • The paper shows a result for development of BLDC motor drive by using a resolver as position detection sensor. The developed drive use a method detecting rotor position based on HSI interrupt function of microprocessor without a specialized counting circuit. The algorithm generating three-phase PWM wave to change switching voltage and current is realized based on single chip microprocessor. The PWM generating part and position counting circuit are realized by software technique without usage of conventional analogue circuit or object-oriented chips. So the drive system become compact. The effectiveness of the developed drive is verified by experimented results of speed response for step reference input.

  • PDF

Identification of Parameters for Induction Motor at Standstill (완전 정지형 방식에 의한 유도 전동기 파라미터 오토튜닝)

  • Kim J.H.;Hong C.O.;Kwon B.H.;Lim K.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.900-903
    • /
    • 2003
  • An identification method of induction motor parameters such as rotor time constant and mutual inductance at standstill condition is discussed assuming that stator resistance and leakage has already been obtained applying two different DC voltage and single phase voltage to the induction motor, respectively. This proposed scheme is implemented by means of Model Reference Adaptive Control (MRAC) technique, which uses a rotor flux equation in voltage model as a reference model and one in current model and is demonstrated through experiment.

  • PDF

An Analysis or Starting and Driving Characteristics of Synchronous Motor (동기전동기의 시동 및 운전특성 해석)

  • Park, Han-Kyu;Song, Ho-Shin;Hwang, Jung-Weon;Cho, Yong-Kil;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.232-234
    • /
    • 1994
  • In this paper. to estimate starting torque of synchronous motor by simple test, we propose a new method which is the combination of commercial tests and single phase AC applied test of synchronous motor. A driving characteristic was examined when field winding is supplied a de and chopper current. The starting characteristics are assumed and agreed with actual data.

  • PDF

Analysis on the characteristics the induction motor under mechanical unbalance of a rotor (유도형 모터 회전자의 기계적 불형형 특성해석)

  • Jang, S.M.;Lee, S.L.;Seo, J.H.;Jeong, S.S.;Kim, K.J.;Park, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.296-298
    • /
    • 1998
  • The mechanical unbalance of the rotor in motors generate vibrations and make its shortened their life, therefore, it is important that search for a cause of the vibration in the point of economics. In this paper, to reduce the vibration we will analyse the unbalance magnetic pull in induction motor. Namely, the electromagnetically generated forces, the airgap flux density distribution in a single phase induction motor is calculated by analytical and numerical method.

  • PDF

Operation Analysis of Induction Motor under the Combination of Linear & Non-linear Loads (선형 및 비선형 부하 혼합 운전시 유도전동기의 동작 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Kim, Jun-Ho;Lee, Jong-Han;Jeong, Jong-Ho;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.65-67
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Motors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

Study on Analysis of Operating Characteristics of Motor Block While KTX is Moving at Neutral Section of Kyung-Bu High Speed Line (경부고속선 절연구간에서 KTX 운행중 모터블럭의 동작특성 분석)

  • Choi, Chang Hyun;Lho, Young Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1523-1527
    • /
    • 2015
  • Traction power is supplied by three-phase alternating current of 154 kV power grid and electric trains are operated on single phase feeding system. It becomes important to use all the three phases equally and convert them into two-phase electric power (90 degree phase rotation) for traction supply. This is achieved by special transformer from the adjacent traction substation which is separated by a neutral section. Neutral section locations are in front of the substation and between the two substations. The first stage of the Seoul-Busan high-speed railway, design curve radius is larger than 7,000 m and the greatest slope is 25‰. The railway track conditions are evaluated as good enough to install a neutral section at the first stage, but a few factors of coasting operation of the train should be considered at the second stage of Seoul-Busan high-speed railway. The neutral section was located at Kim-cheon substation, which made some neutral section problems produced by the operating train, and the neutral section was moved about 1.5 km to the south toward Dong Dae-gu station due to the track operation condition. Some of the trains which stopped at the existing Kim-cheon Gu-mi station produced another motor block failure after moving the neutral section. In this paper, power quality, system performance and track condition, etc. are suggested to solve the problems.

Detection and Classification of Demagnetization and Short-Circuited Turns in Permanent Magnet Synchronous Motors

  • Youn, Young-Woo;Hwang, Don-Ha;Song, Sung-ju;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1614-1622
    • /
    • 2018
  • The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.

A Study on the Analysis of the Output Waveform of Three-Phase Regular Sampling PWM Inverter (3상 레귤러 샘플링 PWM 인버터의 출력파행 분석에 관한 연구)

  • 노창주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.3
    • /
    • pp.274-285
    • /
    • 1992
  • Among various Power converters, a variable voltage variable frequency (VVVF) three-phase PWM inverter is regarded as most promising power converter due to its capabilities, which permits the control of voltage, frequency and harmonic contents in a single power stage employing only on DC source. As a modulating technique of the PWM inverter, the regular sampling technique has rendered possible the on-line computation and generation of PWM control waveforms with a reasonably high switching frequencies. In this paper, microprocessor based three-phase regular samping PWM inverter with real-time control algorithm and control circuits for driving three phase AC motor has been developed. Harmocic components of PWM waveform were analized theoretically in terms of Bessel function series and then calculated by digital computer and observed with spectrum analyzer.

  • PDF

On/off exciting angle design for minimizing torque ripple in SRM with 1/2-phase hybride exciting method (SRM 최소리플 운전을 위한 1-2상 하이브리드 여자방식의 on/off 여자각 설계)

  • Lee, Jung-Jong;Lee, Geun-Ho;Jo, Jae-Ok;Lee, Jea-Gun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.48-50
    • /
    • 2001
  • This paper presents the switching angle and the 1/2-phase hybrid exciting method to minimize torque ripple in the 6/4 Switched Reluctance Motor (SRM). The inductance in SRM is dependent on rotor position and current. Therefore, the inductance profile is expressed as an approximate function based on FEM data. And then, the dynamic characteristics are simulated by Matlab simulink using the derived inductance function. The torque ripple resulting from single phase exciting and 1/2-phase hybrid exciting is compared.

  • PDF

Characteristics of π-shaped Ultrasonic Motor

  • Lim Kee-Joe;Park Seong-Hee;Yun Yong-Jin;Park Cheol-Hyun;Kang Seong-Hwa;Lee Jong-Sub
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.241-245
    • /
    • 2006
  • In this paper, the design and characteristics of a $\pi-shaped$ ultrasonic motor that is applicable to optical zoom operation of a lens system for mobile phones are investigated. Its design and simulation of performances are carried out by FEM (finite element method) commercial software. As a simulation result, by applying voltage with single phase, a combined vibration is produced at the surface of a stator arm. A prototype of the motor is fabricated and its outer size is $8*4*2mm^3$ including the cylindrical steel rod of 2 mm in diameter as the rotor. The motor exhibits a maximum speed of 500 rpm and a power consumption of 0.3 W when driven at 20 Vpp and 64 kHz.