• Title/Summary/Keyword: Single-phase motor

Search Result 477, Processing Time 0.036 seconds

A study on the Rotor Design in Single-phase Line-start Permanent Magnet Motor (단상 유도형 동기전동기의 회전자 설계에 관한 연구)

  • Kim, Won-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • The purpose of this paper is the rotor design of a single-phase LSPM(Line-start permanent magnet) motor. A single-phase LSPM motor has a permanent magnet in the rotor that is same as induction motor. For that reason, magnet is operated by breaking torque in starting region and alignment torque in driving region. Therefore, we need the design process considering the trade-off relationship. In this paper, we propose the design process of a single-phase LSPM motor for a high starting torque and efficiency with FEM. And we use Taguchi Method for considering tolerance in manufacture. Finally, we compared the LSPM motor that is designed in this paper and conventional induction motor.

High Performance of Single-Phase Induction Motor with Vector Control (단상 유도전동기의 벡터제어에 의한 고성능 운전)

  • Lee, Kyung-Joo;Lee, Deuk-Ki;Kim, Jin-Kyu;Jung, Jong-Jin;Kim, Heung-Gun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2776-2779
    • /
    • 1999
  • This paper describes the vector control of a single-phase induction motor drive system to improve the dynamic performance for low power applications. Using auxiliary winding which is only utilized for starting, the single-phase induction motor is regarded as the unsymmetrical two-phase motor. This paper shows that the vector control of single-phase induction motor with new method achieves the high performance of the motor. The results of the new method are illustrated by the simulations.

  • PDF

Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 영구자석형 유도동기기의 정상상태 특성해석)

  • Kang, Gyu-Hong;Nam, Hyuk;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

A Study on the Performance Analysis of Single-Phase Induction Motor Considering Asymmetrical Concept (비대칭성개념(非對稱性槪念)을 고려한 단상전원용유도전동기(單相電源用誘導電動機)의 특성해석(特性解析)에 관한 연구(硏究))

  • Lee, Il-Chun;Kim, Chul-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.5-9
    • /
    • 1989
  • In this paper, while 2-or 3-phase induction motor is driven with balance and no noise driving at dynamic and steady state condition. Single-phase induction motor is driven with pulsating torque except specific driving point. So we analyze the reason of producing pulsating torque with the view of unsymmetring concept. These results are applied to the design of high efficincy, high quality single-phase induction motor.

  • PDF

Characteristics of the Two-phase Induction Motor By the Inverter Fed Control

  • Yang Byoung-Yull;Kwon Byung-Il
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.312-316
    • /
    • 2005
  • The single phase induction motor has been commonly applied to small-sized electrical appliances because of its low cost, but it has low efficiency and large torque ripple, and it is incapable of speed control. However, two-phase induction motors have small torque ripple, high efficiency and variable speed control, because they are inverter fed. In this paper, the dynamic characteristics of the two-phase induction motor, such as the torque ripple, current and speed, are analyzed by using the time-stepping finite element method, and compared with the cage-type single phase induction motor.

Design of Single-Phase Line-Start Permanent Magnet Motor Using Equivalent Circuit Method

  • Kwon, Sun-Hyo;Lee, Chul-Kyu;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.490-495
    • /
    • 2006
  • In this research, the design procedure and the design method of a single-phase line-start permanent magnet motor (LSPM) are proposed. In the design procedure, the permanent magnet is designed first and the windings and capacitors are designed later. As well, the points of design of each design parameter are explained. In the design of the single-phase LSPM, the equivalent circuit method is combined with the finite element method (FEM) because it has a shorter analysis time than FEM. The 400 watts single-phase LSPM is designed and manufactured. The characteristics of the manufactured single-phase LSPM are analyzed and experimented. From the analysis result and the experiment result, it is verified that the design procedure and the design method of the single-phase LSPM is valid.

Brushless DC Motor Electromagnetic Torque Estimation with Single-Phase Current Sensing

  • Cham, Chin-Long;Samad, Zahurin Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.866-872
    • /
    • 2014
  • The purpose of this paper was to find an effective method for measuring electromagnetic torque produced by a brushless DC motor with single-phase current sensing in real-time. A torque equation is derived from the theory of brushless DC motor. This equation is then validated experimentally with a motor dynamometer. A computer algorithm is also proposed to implement the electromagnetic torque estimation equation in real-time. Electromagnetic torque is a linear function of phase current. Estimating the electromagnetic torque in real-time using single-phase current is not appropriate with existing equations, however, because of the rectangular alternating-pulse nature of the excitation current. With some mathematical manipulation to the existing equations, the equation derived in this paper overcame this limitation. The equation developed is simple and so it is computationally efficient, and it takes only motor torque constant and single-phase current to evaluate the electromagnetic torque; no other parameters such as winding resistances, inductances are needed. The equation derived is limited to the three-phase brushless DC motor. It can, however, easily be extended to the multiphase brushless DC motor with the technique described in this paper.

A Study on the Susceptibility of Single-phase Sensitive Loads and the Three-phase Induction Motor by Voltage Sag (순간전압강하에 의한 단상 민감부하 및 삼상 유도전동기의 외란 민감도에 관한 연구)

  • Yun Sang-Yun;Moon Jong-Fil;Kim Jae-Chul;Lee Hee-Tae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • In this paper we explore the susceptibility of common sensitive loads by voltage sags of power distribution systems. The experimental approach was used for obtaining the susceptibility of single-phase loads and the three-phase induction motor. The experimental result of single-phase loads was transformed to the ITIC(Information of Technology Industry Council) format and used for evaluating the adverse impacts of a individual and repetitive sags using the performance contour of the foreign standard data. In order to assess the impact of voltage sags on three-phase induction motor, also, the experiment was peformed. The experiment was focused on the current, torque, and speed loss of the motor during a voltage sag. For comparing the impacts of individual and repetitive voltage sags, the variations of motor torque is focused among the experimental results. The sensitive curves of instantaneous current peak are used to describe the susceptibility of three-phase induction motor and 진so it were used for the quantitative analysis of the impact of three-phase induction motor due to voltage sags. Through the results of experiment, we verified that some types loads have more severe impact at repetitive voltage sags than individual ones and proposed method can be effectively used to evaluate the actual impact of voltage sags.

Method of Optimum Efficiency to Coefficient of Utilization for Single Phase Induction Motor (단상 유도전동기의 이용률 변동에 대한 최적효율 산정기법)

  • Kim, Yang-Ho;Kim, Young-Sun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.4
    • /
    • pp.155-160
    • /
    • 2006
  • In this paper, deduced suitable optimization to request output condition after taking closely characteristic data of single phase induction motor(SIM) which is the possibility becoming economic is coming to be demanded. Motor proper move connection data took advantage of result of existing data and iron loss and copper loss, mechanical loss took advantage of statistical data, and decide motor move laking advantage of saving data and secondary resistance and optimum purpose of method that is proposed through single phase induction motor and comparison performance evaluation having on the same output parameter. That decide material factor, electric power damage ratio, and coefficient of utilization for optimum function by method that search request output and optimum values of efficiency case by case and decided is proper that is saved after take magnetizing reactance relationship. This research result which it sees against a material expense with use coefficient of utilization which is included in loss expense decides the same plan variable back the place efficiency is useful and will be applied.

A Study on the Design of Single Phase LSPM Considering the Irreversible Demagnetization of Permanent Magnet (불가역 감자를 고려한 단상 LSPM 설계에 관한 연구)

  • Jung, Dae-Sung;Go, Sung-Chul;Park, Hyun-June;Kwon, Sam-Young;Lee, Hyung-Woo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2186-2193
    • /
    • 2008
  • The growth on consideration of energy savings and motor efficiency has caused the LSPM(Line Start Permanent Magnet Motor) to be focused as a substitute for conventional induction motors. A Line start permanent magnet motor able to be driven at synchronous speed is designed based on a single phase induction motor in this paper. The single phase LSPM is identical to the induction motor except a permanent magnet is installed in the rotor. As the permanent magnet influences the characteristics of both transient state and steady state, a design considering both starting and synchronization conditions was used. In this paper, by adopting DOE, a single phase motor has been designed showing high power and smooth start. Also, optimal model is selected by weighting function. And the characteristics demagnetization are analyzed according to the variation of magnet shape. Finally, to verify the design results, a prototype was measured.