• Title/Summary/Keyword: Single-phase $CuInSe_2$

Search Result 15, Processing Time 0.021 seconds

Solvothermal Synthesis of Copper Indium Diselenide in Toluene

  • Chang, Ju-Yeon;Han, Jae-Eok;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.434-438
    • /
    • 2011
  • Polycrystalline $CuInSe_2$ (CIS) was synthesized through solvothermal reactions in toluene with selected alkyl amines as complexing agents. The alkyl amines were used as reducing agent of selenium and catalytic ligands, enhancing the formation of CIS compounds in the colloidal solution. Toluene does not contribute the syntheses directly but minimizes the amounts of amines required for single phase CIS. We systematically studied the reactivity of amine compounds for the solovothermal syntheses, determined critical concentration of amine and the shortest reaction time. Crystallinity, morphology, chemical composition, and band gap of the prepared $CuInSe_2$ were respectively measured by X-ray diffraction, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy and UV-vis spectroscopy.

$Cu(In_{1-x}Ga_x)Se_2$ Thin Film Fabrication by Powder Process

  • Song, Bong-Geun;Cho, So-Hye;Jung, Jae-Hee;Bae, Gwi-Nam;Park, Hyung-Ho;Park, Jong-Ku
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.92-92
    • /
    • 2012
  • Chalcopyrite-type Cu(In,Ga)Se2 (CIGS) is one of the most attractive compound semiconductor materials for thin film solar cells. Among various approaches to prepare the CIGS thin film, the powder process offers an extremely simple and materials-efficient method. Here, we present the mechano-chemical synthesis of CIGS compound powders and their use as an ink material for screen-printing. During the synthesis process, milling time and speed were varied in the range of 10~600 min and 100~300 rpm, respectively. Both phase evolution and powder characteristics were carefully monitored by X-ray diffraction (XRD) method, scanning electron microscope (SEM) observation, and particle size analysis by scanning mobility particle spectrometer (SMPS) and aerodynamic particle sizer (APS). We found the optimal milling condition as 200 rpm for 120 min but also found that a monolithic phase of CIGS powders without severe particle aggregation was difficult to be obtained by the mechano-chemical milling alone. Therefore, the optimized milling condition was combined with an adequate heat-treatment (300oC for 60 min) to provide the monolithic CIGS powder of a single phase with affordable particle characteristics for the preparation of CIGS thin film. The powder was used to prepare an ink for screen printing with which dense CIGS thin films were fabricated under the controlled selenization. The morphology and electrical properties of the thin films were analyzed by SEM images and hall measurement, respectively.

  • PDF

Synthesis and Characterization of Cu(In,Ga)Se2 Nanostructures by Top-down and Bottom-up Approach

  • Lee, Ji-Yeong;Seong, Won-Kyung;Moon, Myoung-Woon;Lee, Kwang-Ryeol;Yang, Cheol-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.440-440
    • /
    • 2012
  • Nanomaterials have emerged as new building blocks to construct light energy harvesting assemblies. Size dependent properties provide the basis for developing new and effective systems with semiconductor nanoparticles, quantized charging effects in metal nanoparticle or their combinations in 2 and 3 dimensions for expanding the possibility of developing new strategies for photovoltaic system. As top-down approach, we developed a simple and effective method for the large scale formation of self-assembled Cu(In,Ga)$Se_2$ (CIGS) nanostructures by ion beam irradiation. The compositional changes and morphological evolution were observed as a function of the irradiation time. As the ion irradiation time increased, the nano-dots were transformed into a nano-ridge structure due to the difference in the sputtering yields and diffusion rates of each element and the competition between sputtering and diffusion processes during irradiation. As bottom-up approach, we developed the growth of CIGS nanowires using thermal-chemical vapor deposition (CVD) method. Vapor-phase synthesis is probably the most extensively explored approach to the formation of 1D nanostructures such as whiskers, nanorods, and nanowires. However, unlike binary or ternary chalcogenides, the synthesis of quaternary CIGS nanostructures is challenging because of the difficulty in controlling the stoichiometry and phase structure. We introduced a method for synthesis of the single crystalline CIGS nanowires in the form of chalcopyrite using thermal-CVD without catalyst. It was confirmed that the CIGS nanowires are epitaxially grown on a sapphire substrate, having a length ranged from 3 to 100 micrometers and a diameter from 30 to 500 nm.

  • PDF

The Study on Cu2ZnSnSe4 Thin Films without Annealed Grown by Pulsed Laser Deposition for Solar Cells

  • Bae, Jong-Seong;Byeon, Mi-Rang;Hong, Tae-Eun;Kim, Jong-Pil;Jeong, Ui-Deok;Kim, Yang-Do;O, Won-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.398.1-398.1
    • /
    • 2014
  • The $Cu_2ZnSnSe_4$ (CZTSe) thin films solar cell is one of the next generation candidates for photovoltaic materials as the absorber of thin film solar cells because it has optimal bandgap (Eg=1.0eV) and high absorption coefficient of $10^4cm^{-1}$ in the visible length region. More importantly, CZTSe consists of abundant and non-toxic elements, so researches on CZTSe thin film solar cells have been increasing significantly in recent years. CZTSe thin film has very similar structure and properties with the CIGS thin film by substituting In with Zn and Ga with Sn. In this study, As-deposited CZTSe thin films have been deposited onto soda lime glass (SLG) substrates at different deposition condition using Pulsed Laser Deposition (PLD) technique without post-annealing process. The effects of deposition conditions (deposition time, deposition temperature) onto the structural, compositional and optical properties of CZTSe thin films have been investigated, without experiencing selenization process. The XRD pattern shows that quaternary CZTSe films with a stannite single phase. The existence of (112), (204), (312), (008), (316) peaks indicates all films grew and crystallized as a stannite-type structure, which is in a good agreement with the diffraction pattern of CZTSe single crystal. All the films were observed to be polycrystalline in nature with a high (112) predominant orientation at $2{\theta}{\sim}26.8^{\circ}$. The carrier concentration, mobility, resistivity and optical band gap of CZTSe thin films depending on the deposition conditions. Average energy band gap of the CZTSe thin films is about 1.3 eV.

  • PDF

Small Molecular Solar Cells toward Improved Efficiency and Stability

  • Kim, Ji-Hwan;Kim, Hyo-Jeong;Jeong, Won-Ik;Kim, Tae-Min;Lee, Yeong-Eun;Kim, Se-Yong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.73-73
    • /
    • 2011
  • We will report a few methods to improve the efficiency and stability in small molecule based organic solar cells, including the formation of bulk heterojunctions (BHJs) through alternative thermal deposition (ATD), the use of a micro-cavity structure and interface modifications. By ATD which is a simple modification of conventional thermal evaporation, the thicknesses of alternative donor and acceptor layers were precisely controlled down to 0.1 nm, which is critical to form BHJs. The formation of a BHJ in copper(II) phthalocyanine (CuPc) and fullerene (C60) systems was confirmed by AFM, GISAXS and absorption measurements. From analysis of the data, we found that the CuPc|C60 films fabricated by ATD were composed of the nanometer sized disk shaped CuPc nano grains and aggregated C60, which explains the phase separation of CuPc and C60. On the other hand, the co-deposited CuPc:C60 films did not show the existence of separated CuPc nano grains in the CuPc:C60 matrix. The OPV cells fabricated using the ATD method showed significantly enhanced power conversion efficiency compared to the co-deposited OPV cells under a same composition [1]. We will also present by numerical simulation that adoption of microcavity structure in the planar heterojunction can improve the short circuit current in single and tandem OSCs [2]. Interface modifications also allowed us to achieve high efficiency and high stability OSCs.

  • PDF