• 제목/요약/키워드: Single-layer lattice dome

Search Result 11, Processing Time 0.022 seconds

A Study on the Stability of the Single-Layer Latticed Dome during Erection Using the Step-Up Method (Step-Up 공법에 의한 단층래티스돔의 시공시 안정성 연구)

  • Koo, Choong-Mo;Jung, Hwan-Mok;Kim, Cheol-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • The large-space single-layer lattice dome is relatively simpler in terms of the arrangement of the various framework members and of the design of the junction than the multi-layered lattice dome, can reduce the numbers and quantity of the framework members, and has the merit of exposing the beauty of the framework as it stands. The single-layer lattice dome, however, requires a stability investigation of the whole structure itself, along with an analysis of the stress of the framework members, because an unstable phenomenon called "buckling" occurs when its weight reaches critical levels. Many researchers have systematically conducted researches on the stability evaluation of the single-layer lattice dome. No construction case of a single-layer lattice dome with a 300-m-long span, however, has yet been reported anywhere in the world. The large-space dome structure is difficult to erect due to the gigantic span and higher ceiling compared with other common buildings, and its construction cost is generally huge. The method of erecting a structure causes major differences in the construction cost and period. Therefore, many researchers have been conducting various researches on the method of erecting such structure. The step-up method developed by these authors can reduce the construction cost and period to a great extent compared with the other general methods, but the application of this method inevitably requires the development of system supports in the center section as well as pre-existing supports in the boundary sections. In this research, the safety during the construction of a single-layer lattice dome with 300-m-long span using pre-existing materials was examined in the aspect of structural strength, and the basic data required for manufacturing the supports in the application of the step-up method developed by these authors during the erection of the roof structure were obtained.

Study on dynamic behavior of a new type of two-way single layer lattice dome with nodal eccentricity

  • Satria, Eka;Kato, Shiro;Nakazawa, Shoji;Kakuda, Daisuke
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.511-530
    • /
    • 2008
  • This paper discusses a feasibility of a new type of two-way system for single layer lattice domes with nodal eccentricity by investigating the dynamic behavior under earthquake motions. The proposed dome is composed of two main arches, intersecting each other with T-joint struts to provide space for tensioning membranes. The main purposes of this study are to calculate the nonlinear dynamic response under severe earthquake motions and to see the possibility of using this new type of two-way system for single layer lattice domes against earthquake motions. The results show that the main arches remain elastic except yielding of the joints of strut members that can be used to absorb some amount of strain energy at strong earthquake motion. Consequently, deformation of the main arches can be reduced and any heavy damages on the main arches can be minimized. A kind of damage-control characteristic appeared in this system may be utilized against severe earthquake motions, showing a possibility of designing a new type of single layer lattice dome.

A Buckling Characteristics of Single-Layer Lattice Domes according to Section Shapes of Main Frames (The Existing Domestically-Produced Structural Steel is used as Main Frames) (단층래티스 돔의 주부재 단면형상에 따른 좌굴특성 검토 (KS규격 기성 강재 사용을 기준으로 함))

  • Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.4
    • /
    • pp.75-81
    • /
    • 2013
  • The circular hollow section is usually used for member of main frame to carry the external load in single layer lattice dome. But, the H-shaped section may be used for member of main frame since it is convenient for attaching roof panels. Single layer lattice domes have various buckling characteristics, such as the overall buckling, the member buckling, and nodal buckling. The purpose of this study is to compare buckling characteristics of single-layer lattice domes in which the H-shaped steel section as the existing domestically-produced structural steel is used as main frames to those of domes in which a circular hollow section is used as main frames.

Reducing Effect Analysis on Earthquake Response of 100m Spanned Single-Layered Lattice Domes With LRB Seismic Isolation System (LRB 면진 장치를 갖는 100m 단층 래티스 돔의 지진 응답에 대한 감소 효과 분석)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.53-64
    • /
    • 2019
  • The objective of this study is to investigate the earthquake response for the design of 100m spanned single-layer lattice dome. The plastic hinge analysis and eigenvalue buckling analysis are performed to estimate the ultimate load of single-layered lattice domes under vertical loads. In order to ensure the stability of lattice domes, it is investigated for the plastic hinge progressive status by the pushover increment analysis considering the elasto-plastic connection. One of the most effective methods to reduce the earthquake response of large span domes is to install the LRB isolation system of a dome. The authors discuss the reducing effect for the earthquake dynamic response of 100m spanned single-layered lattice domes. The LRB seismic isolation system can greatly reduce the dynamic response of lattice domes for the horizontal and vertical earthquake ground motion.

An Experimental Study on the Buckling & Behaviour of Single-Layer Latticed Dome (단층 래티스 돔의 좌굴 및 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.35-44
    • /
    • 2006
  • The form-resistant Systems like a dome and shell are used more widely than post-beam structure system in large space structure. Single layer latticed dome system, one of the form-resistant system, has great merits in manufacturing and constructing but the failure mechanism is not clarified yet. The purpose of this paper is to find out the buckling characteristics of single-layer latticed domes with square network by using the experimental method. Major test parameters are the stiffness of lattice member and space of square lattice. The specimens are applied uniform loading of snow type.

  • PDF

Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span (300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석)

  • Park, Kang-Geun;Chung, Mi-Ja;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Lattice Dome According to Rise ratio (라이즈비에 따른 단층 및 복층 래티스 돔의 좌굴특성에 관한 비교연구)

  • 권영환;정환목;석창목;박상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.283-289
    • /
    • 1998
  • In the latticed domes which is a set of space frame, buckling is derived if the external force reaches a limitation by the lightness of the material and the minimization of the member section area. these are concerned with a geometric shape, network pattern, the number of layer, and so on. Most of all, the number of layer of the lattice dome is a important factor from the viewpoint of initial and structure design. Therefore this study compared buckling characteristics of single-layer with double-layer latticed domes and investigated the relativity of buckling-stress-ratio and member-density-ratio according to rise ratio to improve that designers could extend the range of .design selection

  • PDF

Unstable Behavior and Critical Buckling Load of a Single-Layer Dome using the Timber Elements (목재를 이용한 단층 지오데식 돔의 불안정 거동과 임계좌굴하중)

  • Hong, Seok-Ho;Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.19-28
    • /
    • 2023
  • Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.

The Effects of the Geometrically Initial Imperfection on Buckling Characteristics of pin-Jointed Single-Layer Lattice Domes (핀접합 단층래티스돔의 좌굴특성에 관한 형상초기부정의 영향)

  • Jung, Hwan Mok
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.769-777
    • /
    • 1998
  • That main purpose of this paper is to clarify the effects of geometrically initial imperfection on the buckling characteristics of the pin-jointed single-layer lattice domes with triangular network. Additionally, this study is to get the data that is to formulate the general buckling-strength equation taking geometrically initial imperfection into consideration. Analysis is undertaken by using the frame analysis method which is based on the finite element method dealing with geometrically nonlinear problem.

  • PDF

Topology optimization of nonlinear single layer domes by a new metaheuristic

  • Gholizadeh, Saeed;Barati, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.681-701
    • /
    • 2014
  • The main aim of this study is to propose an efficient meta-heuristic algorithm for topology optimization of geometrically nonlinear single layer domes by serially integration of computational advantages of firefly algorithm (FA) and particle swarm optimization (PSO). During the optimization process, the optimum number of rings, the optimum height of crown and tubular section of the member groups are determined considering geometric nonlinear behaviour of the domes. In the proposed algorithm, termed as FA-PSO, in the first stage an optimization process is accomplished using FA to explore the design space then, in the second stage, a local search is performed using PSO around the best solution found by FA. The optimum designs obtained by the proposed algorithm are compared with those reported in the literature and it is demonstrated that the FA-PSO converges to better solutions spending less computational cost emphasizing on the efficiency of the proposed algorithm.