• Title/Summary/Keyword: Single-lap bonded joint

Search Result 64, Processing Time 0.024 seconds

자동차용 구조접착접합이음의 응력해석과 강도평가에 관한 연구

  • Yu, Yeong-Chul;Oh, Seung-Kyu;Yi, Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.905-915
    • /
    • 1998
  • Static tensile tests using adhesive-bonded single-lap joints of aluminum alloy were conducted to investigate the effect of geometric factor, overlap length, adherend thickness, adhesive thickness and material composition of adherend/adhesive on the strength of adhesive joint. The average applied shear stress at joint fracture decreased with increasing lap length. However increasing the adherend thickness resulted in a higher joint strength. Higher yield strength of adherend and lower elastic modulus of adhesive is advantageous to the adhesive joint. Newly proposed modified joint factor could be well evaluated the influence of lap length, adherend thickness and adhesive thickness on the bond strength for adhesive joints.

An Experimental Study on the Strength of Composite-to-Aluminum Hybrid Single-Lap Joints (복합재-알루미늄 단일겹침 하이브리드 체결부 강도 특성 실험 연구)

  • Kim, Jung-Jin;Seong, Myeong-Su;Kim, Hong-Joo;Cha, Bong-Keun;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.841-850
    • /
    • 2008
  • Strength and failure of composite-to-aluminum rivetted, bonded, and rivet/bonding hybrid single-lap joints were investigated by experiment. A total of 82 joint specimens were tested with 3 different overlap lengths and 2 types of stacking sequence. FM73m adhesive film and NAS9308-4-03 rivet were used for hybrid joints. While failure loads of the bonded and hybrid joints increased as the overlap length increased, failure loads of the rivetted joints were not affected by the overlap length. Effect of the stacking sequence was not remarkable in the simple bonded or rivetted joints. Failure loads of the hybrid joints, however, showed the maximum of 30% difference depending on the stacking sequence. Major failure mode of the bonded and hybrid joints was the delamination of the composite adherend and failure mode of riveted joints was the rivet failure with local bearing.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

A Parametric Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재-알루미늄 단일겹침 접착 체결부의 강도에 관한 인자연구)

  • Kim, Tae-Hwan;Seong, Myeong-Su;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.34-42
    • /
    • 2007
  • Strength and failure of adhesively bonded carbon composite-to-aluminum single-lap joints were studied by experiment. The main objective of this study is to investigate the effect of various parameters such as curing pressure for bonding, overlap lengths, and adherend thickness on the failure loads and modes of the bonded Joints with dissimilar materials. Experimental results show that the bonding pressure for composite-to-aluminum dissimilar materials should be 4 atm at the lowest. Failure load of the joints increases as the overlap length increases, but the strength (failure load divided by bonded area) decreases rapidly after the overlap width-to-length ratio is greater than 1. When the adherend thickness increase to double, bonding strength increase $12{\sim}55%$. Major failure mode of the joints is the delamination in the composite laminate and the location of delamination goes deeper into the laminates as the bonding pressure and overlap length increase.

Design parameters on the tensile load bearing capacity of a co-cured lap joint with steel and carbon fiber/epoxy composite adherends (강철재료와 탄소섬유/에폭시 복합재료를 이용한 동시경화 조인트의 인장하중 전달용량에 미치는 설계변수에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.172-175
    • /
    • 2001
  • The co-cured Joining method, which is regarded as an adhesively bonded Joining method, is an efficient joining technique because both curing and bonding processes for the composite structures can be achieved simultaneously. It requires neither surface treatment onto the composite adherend nor an additional adhesive joining process because the excess resin, which is extracted from composite materials during consolidation, accomplishes the co-cured Joining process. Since the adhesive of the co-cured joint is the same material as the resin of the composite adherend, the analysis and design of the co-cured joint for composite structures are simpler than those of an adhesively bonded joint, which uses an additional adhesive. In this paper, effects of the manufacturing parameters, namely surface roughness, stacking sequence of the composite adherend, and manufacturing pressure in the autoclave during curing process, on the tensile load bearing capacity of the co-cured single lap joint will be experimentally investigated.

  • PDF

유한요소법에 의한 Adhesive Bonded 복합재료 Lap Joint 의 해석

  • 김원태;김기수;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.111-115
    • /
    • 2001
  • The stress and torque transmission capability of the tubular, hexagonal and elliptic single lap joints were analyzed by the finite element method (ANSYS 4.4A) and compared to those with the experimental results. The adherends of the joints were composed of the carbon fiber epoxy composite shafts and the steel shafts. In calculating the torque capability, the linear laminate (smeared) properties of the composite and the nonlinear shear properties of the adhesive were used. The experiments revealed that the torque capability calculation performed by this method gave accurate results.

A Study on the Adhesive Properties of Lightweight Primary Mirror (대구경 주반사경의 접착 특성에 관한 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.796-801
    • /
    • 2007
  • The optical performance of the mirror for satellite camera is highly dependent on the adhesive properties between the mirror and its support. In order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this research, the mechanical properties of three kinds of space adhesives are studied. In case of the materials which show nearly incompressible behavior such as space adhesives, it is important to measure shear modulus which governs deviatoric stress components. Shear moduli of the adhesives are determined by using single lap adhesively bonded joint. For the shear tests, several points have been selected from $-20^{\circ}C$ to $50^{\circ}C$ which is operating temperature range of the adhesive. The shear modulus of each adhesive is expressed as a function of temperature. Characteristics of the adhesives are discussed regarding their temperature sensitivity. The analysis results of RMS wavefront error w.r.t shear modulus are presented.

  • PDF

Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Yoon Ho-Chel;Choi Jun-Yong;Kim Yong-Jig;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

An Experimental Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재와 알루미늄 이종재료 단일겹침 접착 체결부의 강도에 관한 실험 연구)

  • Kim, Tae-Hwan;Lee, Chang-Jae;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.204-211
    • /
    • 2007
  • Experiments were conducted to investigate the failure and strengths of carbon composite-to-aluminum single-lap bonded joints with 5 different bonding lengths. Joint specimens were fabricated to have secondary bonding of laminate and aluminum with a film type adhesive, FM73m. Tested joints have the bonding strengths between the values of aluminum-to-aluminum joints and composite-to-composite joints. In the joints with bonding length-to-width ratio smaller than 1, the strength decreases as the bonding length increases. In the joints with the ratio larger than 1, however, the strength converges to a constant value. Final failure mode of all the specimens was delamination. To use the maximum strength of the adhesive, it is important to design the joint to have strong resistance to delamination.

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.