• 제목/요약/키워드: Single-input multi-output

검색결과 193건 처리시간 0.018초

병렬 구조의 직접 디지털 주파수 합성기의 설계 (A practial design of direct digital frequency synthesizer with multi-ROM configuration)

  • 이종선;김대용;유영갑
    • 한국통신학회논문지
    • /
    • 제21권12호
    • /
    • pp.3235-3245
    • /
    • 1996
  • 이산스펙트럽(Spread Spectrum) 통신 시스템에 사용되는 DDFS(Direct Digital Frequency Synthesizer)는 짧은 천이시간과 광대역의 특성을 요구하고, 전력소모도 적어야 한다. 이를 위해서 본 연구의 DDFS는 파이프라인 구조의 위상 가산기와 4개의 sine ROM을 병렬로 구성하여, 단일 sine ROM으로 구성된 DDFS에 비해 처리 속도를 4배 개선하였다. 위상 가산기의 위상 잘림으로 나빠지는 스펙트럼 특성은 위상 가산기 구조와 같은 잡음 정형기를 사용하여 보상하였고, 잡음 정형기의 출력 중 상위 8-bit만을 sine ROM의 어드레스로 사용하였다. 각각의 sine ROM은 사인 파형의 대칭성을 이용하여, 0 ~ $\pi$/2 사인 파형의 위상, 진폭 정보를 저장함으로 0 ~ 2$\pi$ 사인 파형의 정보를 갖는 sine ROM에 비해 크기를 크게 줄였고, 어드레스의 상위 2-bit를 제어 비트로 사용하여 2$\pi$의 사인 파형을 조합했다. 입력 클럭을 1/2, 1/4로 분주하여, 1/4 주기의 낮은 클럭 주파수로 대부분의 시스템을 구동하여, 소비 전력을 감소시켰다. DDFS 칩은 $0.8{\mu}$ CMOS 표준 공정의 게이트 어레이 기술을 이용ㅇ하여 구현하였다. 측정 결과 107MHz의 구동 클럭에서 안정하게 동작하였고, 26.7MHz의 최대 출력 주파수를 발생시켰다. 스펙트럼 순수도(Spectral purity)는 -65dBc이며, tuning latency는 55 클럭이다. DDFS칩의 소비 전력은 40MHz의 클럭 입력과 5V 단일 전원을 사용하였을 때 276.5mW이다.

  • PDF

다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가 (Application of recurrent neural network for inflow prediction into multi-purpose dam basin)

  • 박명기;윤영석;이현호;김주환
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1217-1227
    • /
    • 2018
  • 본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.

농업기상재해 조기경보시스템에서의 고해상도 격자형 자료의 처리 속도 향상 기법 (Speed-up Techniques for High-Resolution Grid Data Processing in the Early Warning System for Agrometeorological Disaster)

  • 박주현;신용순;김성기;강위수;한용규;김진희;김대준;김수옥;심교문;박은우
    • 한국농림기상학회지
    • /
    • 제19권3호
    • /
    • pp.153-163
    • /
    • 2017
  • 데이터 처리 속도는 예보 능력과 관련이 있다. 최신의 입력 자료를 이용한 예측 데이터의 고속 생산은 신속한 대처를 가능하게 한다. 또한 알고리즘 작성, 계산, 결과 평가, 알고리즘 개선으로 이어지는 순환 구조를 원활하게 할 뿐만 아니라 오류 발생시 빠른 시간 내에 복구할 수 있게 하는 등 매우 중요한 요소이다. 현재의 조기경보 시스템은 매 계산 주기 마다 섬진강 유역의 10개 시군에 대해 30미터 해상도의 격자형 자료를 400개 이상 생성하고 있으며(중간 데이터 포함) 최대 9일까지 예보되는 자료를 포함할 경우 600개 이상이다. 이는 전국을 30미터 해상도로 약 45개를 생성하는 계산양과 비슷하다. 또한 14,000여개의 필지에 대한 구역 통계와, 각 래스터의 평균, 최대, 최소 등의 통계자료 생성도 함께 수행 해야 한다. 이와 같은 대량의 데이터를 한정된 시간 내로 처리하기 위한 몇 가지 기법을 적용하여 적용하였으며, 아직 적용은 못하였으나 가능성의 여부를 평가해 보는 것으로 본 연구를 진행하였다. 그 결과 앞서 제시된 래스터 캐시, NFS 캐시, 분산 처리를 모두 적용할 경우 데이터 처리 시간을 1/8로 단축 시킬 수 있음이 확인되었다. 또한 GPU를 이용한 연산을 적용할 경우 일부 모듈에 대해 매우 큰 폭으로 수행 시간을 단축 시킬 수 있음을 확인하였다. 다만 캐시를 위한 추가적인 디스크, GPU라는 별도의 하드웨어, 추가된 하드웨어 지원을 위한 고출력 전원 장치와 이에 따른 UPS (Uninterruptible power supply, 무정전 전원공급 장치)까지 상대적으로 높은 사양으로 준비해야 하는 비용적인 문제가 발생할 수 있다. 본 연구에서 제시한 네 가지 기법 중 세 가지는 계산 서버 추가를 통한 수평적 성능 확장에 관한 것이다. 하지만 서버의 추가가 처리 속도 향상으로 이어지지 않음은 물론 오히려 저하시키는 경우가 있다. 본 연구에서는 특정 시간 내로 작업을 완료 시키지 못하면 해당 작업을 반환하여 다른 서버가 처리하는 간단한 방식을 이용한다. 하지만 이런 문제를 지속적으로 발생시키는 계산 서버가 발견된다면 정해진 기준에 따라 계산 작업에서 완전히 퇴출 시켜야 성능 향상에 도움이 된다. 따라서 처리 속도에 대한 정확한 원인을 검사하고 이를 실시간으로 반영할 수 있는 기법이 필요하다.