• Title/Summary/Keyword: Single-fluid space

Search Result 52, Processing Time 0.02 seconds

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

Effects of multiple driving scales on incompressible turbulence

  • Yoo, Hyun-Ju;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.75.2-75.2
    • /
    • 2012
  • Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and intracluster medium. To maintain turbulent motion, energy must be injected into the fluids. In turbulence studies, it is customary to assume that the fluid is driven on a scale, but there can be many different driving mechanisms that act on different scales in astrophysical fluids. We expect different statistical properties of turbulence between turbulence with single driving scale and turbulence with double driving scales. In this work, we perform 3-dimensional incompressible MHD turbulence simulations with energy injection in two ranges, 2${\surd}$12 (large scale) and 15

  • PDF

Flow Analysis for Optimum Design of Mixing Vane in a PWR Fuel Assembly

  • In, Wang-Kee;Oh, Dong-Seok;Chun, Tae-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.327-338
    • /
    • 2001
  • A computational fluid dynamics (CFD) analysis was performed to propose the optimum design of flow mixing vane on the space grid in a PWR fuel assembly. The flow mixing vanes considered in this study for optimum design are swirl-vane and twisted-vane. A single subchannel of one grid span was modeled using flow symmetry to minimize the computational effort. The CFD predictions are in good agreement with the experimental results for the split- vane, which shows the applicability of the CFD method. The mixing effect by swirling flow and crossflow, and the pressure drop were estimated and compared for the various vane angles. The optimum vane angle is proposed to be 40。 and 35。 from the direction of axial flow for the swirl-vane and the twisted-vane, respectively.

  • PDF

CFD-based simulation of fire-induced smoke and carbon monoxide transportation in the single compartment (CFD를 이용한 단일 구획 공간에서의 연기와 CO 확산 시뮬레이션)

  • Son, Yoon-Suk;Kim, Hyeong-Gweon;Oh, Hyung-Sik;Kim, Tae-Ok;Shin, Dong-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.290-293
    • /
    • 2008
  • In this study, the Computational Fluid Dynamics (CFD) has been used to analyze the smoke movement and the carbon monoxide concentration distribution, both vertically and longitudinally, in a compartment, based on conservation laws. The Fire Dynamics Simulator (FDS) developed by National Institute of Standards and Technology (NIST) was used for numerical simulations using Reynolds averaged Navier-Stokes equations (RANS) model to solve for time-averaged properties. Results show, as a function of time, a detailed distribution of temperature and carbon monoxide concentration changing against the height above the floor and those changes alongside the distance away from the fire source. Fire-induced smoke and toxic gases like CO are more dangerous in a confined space. The result of study may contribute in designing the smoke evacuation system based on the precise tenable condition.

  • PDF

Penetrating Chest Trauma in Autopneumonectomy Status due to Pulmonary Tuberculosis : 1 Case Report (폐결핵에 의한 전폐자가절제 환자에서의 흉부 자상 치험 1례-)

  • Hong, Yoon Joo
    • The Korean Journal of Emergency Medical Services
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 2005
  • Penetrating chest trauma by stab injury may result in massive hemothorax from damage to single or multiple intrathoracic organs such as heart, aorta, internal mammary artery, intercostal artery or pulmonary parenchyme. Prognosis of massive hemothorax necessitating emergency thoracotomy is fatal especially so if there exists concomitant underlying compromise of cardiopulmonary function. A 56 year old man with destroyed left lung due to old pulmonary tuberculosis was stabbed in right parasternal lesion through third intercostal space. Intubation with cardiopulmonary resuscitation and closed thoracostomy were performed to resuscitate from cardiac asystole from hemorrhagic shock and acute respiratory distress. Midsternotomy was made to expose active bleeding foci in right mammary artery, subclavian vein, intercostal artery and anterior segment of right upper lung showing severe bullous change and pleural adhesion. Postoperative care included ventilator support, inotropic instillation and cautious, balance fluid therapy ; successful extubation was done on third postoperative day and patient was discharged on tenth postoperative day without any complication.

  • PDF

Effect of a Tube Diameter on Single Bubble Condensation in Subcooled Flow (튜브 직경에 따른 과냉각 유동 내 단일 기포 응축의 영향)

  • Sun Youb Lee;Cong-Tu Ha;Jae Hwa Le
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Bubble condensation, which involves the interaction of bubbles within the subcooled liquid flow, plays an important role in the effective control of thermal devices. In this study, numerical simulations are performed using a VOF (Volume of Fluid) model to investigate the effect of tube diameter on bubble condensation. As the tube diameter decreases, condensation bubbles persist for a long time and disappear at a higher position. It is observed that for small tube diameters, the heat transfer coefficients of condensation bubbles, which is a quantitative parameter of condensation rate, are smaller than those for large tube diameters. When the tube diameter is small, the subcooled liquid around the condensing bubble is locally participated in the condensation of the bubble to fill the reduced volume of the bubble due to the generation of a backflow in the narrow space between the bubble and the wall, so that the heat transfer coefficient decreases.

The Study on the Verification of the Blasting Effect of Blast Stemming Material and Plug Device (발파전색재료 및 플러그 장치의 발파효과 검증 연구)

  • Ko, Young-Hun
    • Tunnel and Underground Space
    • /
    • v.32 no.4
    • /
    • pp.272-284
    • /
    • 2022
  • This study conducted tunnel blasting to evaluate the blasting effect of a shear thickening fluid-based blasting stemming material and a sealed plug device under development. STF single stemming and STF stemming materials were combined with plugs to a tunnel blasting to which the SAV-Cut method was applied, and the advanced rate and fragmentation of tunnel blasting muck pile were compared when sand stemming was used. Tunnel advanced rate was evaluated using a 3D laser scanner. When the STF stemming material and STF stemming material with the plug were compared to the sand stemming material, it increased by 5.7 and 5.36%, respectively. As a result of evaluation of the fragmentation of tunnel blasting muck pile, it was the best when the STF stemming material was applied, and it decreased by about 61% compared to the case of sand stemming blasting. However, no significant improvement in blasting effect was observed with the application of plug devices.

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell (고체산화물 연료전지의 전극과 스택운영의 기능적 분석)

  • Bae, Joong-Myeon;Kim, Ki-Hyun;Ji, Hyun-Jin;Kim, Jung-Hyun;Kang, In-Yong;Lim, Sung-Kwang;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

Design of a Height Adjustable Bunker Bed Using a Gas Spring (가스 스프링을 이용한 높이조절 벙커침대 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.