• Title/Summary/Keyword: Single-crystalline silicon

Search Result 143, Processing Time 0.026 seconds

Band Gap and Defect Sites of Silicon Nitride for Crystalline Silicon Solar Cells (단결정 실리콘 태양전지를 위한 실리콘 질화막의 밴드갭과 결함사이트)

  • Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.365-365
    • /
    • 2010
  • In this paper, silicon nitride thin films with different silane and ammonia gas ratios were deposited and characterized for the antireflection and passivation layer of high efficiency single crystalline silicon solar cells. As the flow rate of the ammonia gas increased, the refractive index decreased and the band gap increased. Consequently, the transmittance increased due to the higher band gap and the decrease of the defect states which existed for the 1.68 and 1.80 eV in the SiNx films. The reduction in the carrier lifetime of the SiNx films deposited by using a higher $NH_3/SiH_4$ flow ratio was caused by the increase of the interface traps and the defect states in/on the interface between the SiNx and the silicon wafer. The silicon and nitrogen rich films are not suitable for generating both higher carrier lifetimes and transmittance. These results indicate that the band gap and the defect states of the SiNx films should be carefully controlled in order to obtain the maximum efficiency for c-Si solar cells.

  • PDF

Performance of Crystalline Si Solar Cells with Temperature Controlled by a Thermoelectric Module (열전소자 온도조절법을 이용한 결정형 실리콘 태양전지의 성능 측정)

  • Heo, Kimoo;Lee, Daeho;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.375-379
    • /
    • 2015
  • A proper estimate of solar cell efficiency is of great importance for the feasibility analysis of solar cell power plant development. Since solar cell efficiency depends on temperature, several methods have been introduced to measure it by operating temperature modulation. However, the methods either rely on the external environment or need expensive equipment. In this paper, a thermoelectric module was used to control the operating temperature of crystalline silicon solar cells effectively and precisely over a wide range. The output characteristics of crystalline silicon solar cells in response to operating temperatures from $-5^{\circ}C$ to $100^{\circ}C$ were investigated experimentally. Their efficiencies decreased as the temperature rose, since the decrease in the open circuit voltage and fill factor exceeded the increase in the short circuit current. The maximum power temperature coefficient of the single crystalline solar cell was more sensitive to temperature change than that of the polycrystalline solar cell.

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

Contact Resistance Analysis of High-Sheet-Resistance-Emitter Silicon Solar Cells (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

CONTACT RESISTANCE ANALYSIS OF HIGH-SHEET-RESISTANCE-EMITTER SILICON SOLAR CELLS (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.390-393
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

Fabrication and Characterization of Single Crystalline Silicon (SCS) RF MEMS Switch (단결정 실리콘 RF MEMS 스위치의 제작 및 특성 평가)

  • Kim Jong-Man;Lee Sang-Hyo;Baek Chang-Wook;Kwon Young-Woo;Kim Yong-Kweon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.67-70
    • /
    • 2006
  • This paper deals with a single crystalline silicon (SCS) RF MEMS switch for telecommunication system applications. The proposed SCS switch was fabricated using a silicon-on-glass (SiOG) process and its performances in terms of RF responses, switching time, lifetime were characterized. The proposed SCS switch consists of movable plates, mechanical spring structures, which are composed of robust SCS, resulting in mechanically good stability, The measured actuation voltage was 30 V, and with this applied voltage, the insertion loss and isolation characteristics were measured to be 0.05 and 44.6 dB at 2 GHz respectively. The measured switch ON and OFF time were 13 and $9{\mu}s$, respectively. The lifetime of the fabricated switch was tested. Even after over 1 billion cycles repeated ON/OFF actuations, the switch maintained its own characteristics.

  • PDF

Design, Fabrication and Performance Test of A Non-Vacuum Packaged Single Crystalline Silicon MEMS Gyroscope (대기압형 단결정 실리콘 MEMS 각속도계의 설계, 제작 및 성능 측정)

  • Jung, Hyoung-Kyoon;Hwang, Young-Seok;Sung, Woon-Tahk;Chang, Hyun-Kee;Lee, Jang-Gyu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1635-1636
    • /
    • 2006
  • In this paper, a non-vacuum packaged single crystalline silicon MEMS gyroscope is designed, fabricated and tested. To reduce air damping of the gyroscope structure for non-vacuum packaging, air damping model is used and damping is minimized by analysis. The inner and outer spring length is optimized by ANSYS simulation for rigid body motion. The gyroscope is fabricated by SiOG(Silicon On Glass) process. The performance of the gyroscope is measured to evaluate the characteristic of the gyroscope. The sensitivity, non-linearity, noise density and the bias stability are measured to 9.7693 mV/deg/s, 04265 %, 2.3 mdeg/s/rtHz and 16.1014 deg/s, respectively.

  • PDF

Electrical Characteristics of Crystalline Silicon Solar Cell Strip for High Power Photovoltaic Modules (고출력 슁글드 모듈 제작을 위한 결정질 실리콘 태양전지 분할 셀의 전기적 특성)

  • Noh, Eun Bin;Bae, Jae Sung;Kim, Jung Hoon;You, Jong Hyun;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.433-437
    • /
    • 2021
  • As the demand for new and renewable energy increases due to the depletion of fossil fuels, solar power generation, a core energy source for new and renewable energy, requires research on solar modules for high output power generation. In this paper, the electrical characteristics of solar cell strip at the edge and in the center of single-crystal silicon having a semi-square shape were analyzed. The cell strip located in the center showed the efficiency increase by 0.26% compared to the cell strip at the edge of the solar cell. A shingled photovoltaic module was manufactured for each cell strip. As a result, the output power of the module using the cell strip located in the center was higher by 0.992%.

Brief Review of Silicon Solar Cells (실리콘 태양전지)

  • Yi, Jun-Sin
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Photovoltaic (PV) technology permits the transformation of solar light directly into electricity. For the last five years, the photovoltaic sector has experienced one of the highest growth rates worldwide (over 30% in 2006) and for the next 20 years, the average production growth rate is estimated to be between 27% and 34% annually. Currently the cost of electricity produced using photovoltaic technology is above that for traditional energy sources, but this is expected to fall with technological progress and more efficient production processes. A large scale production of solar grade silicon material of high purity could supply the world demand at a reasonably lower cost. A shift from crystalline silicon to thin film is expected in the future. The technical limit for the conversion efficiency is about 30%. It is assumed that in 2030 thin films will have a major market share (90%) and the share of crystalline cells will have decreased to 10%. Our research at Sungkyunkwan University of South Korea is confined to crystalline silicon solar cell technology. We aim to develop a technology for low cost production of high efficiency silicon solar cell. We have successfully fabricated silicon solar cells of efficiency more than 16% starting with multicrystalline wafers and that of efficiency more than 17% on single crystalline wafers with screen printing metallization. The process of transformation from the first generation to second generation solar cell should be geared up with the entry of new approaches but still silicon seems to remain as the major material for solar cells for many years to come. Local barriers to the implementation of this technology may also keep continuing up to year 2010 and by that time the cost of the solar cell generated power is expected to be 60 cent per watt. Photovoltaic source could establish itself as a clean and sustainable energy alternate to the ever depleting and polluting non-renewable energy resource.

Investigation of n+ Emitter Formation Using Spin-On Dopants for Crystalline Si Solar Cells (Spin-On Dopants를 이용한 결정질 실리콘 태양전지의 n+ 에미터 형성에 관한 연구)

  • Cho, Kyeong-Yeon;Lee, Ji-Hoon;Choi, Jun-Young;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.68-69
    • /
    • 2007
  • To make cost-effective solar cells, We have to use low cost material or make short process time or high temperature process. In solar cells, formation of emitter is basic and important technique according to build-up P-N junction. Diffusion process using spin-on dopants has all of this advantage. In this paper, We investigated n+ emitter formation spin-on dopants to apply crystalline silicon solar cells. We known variation of sheet resistance according to variation of temperature and single-crystalline and multi-crystalline silicon wafer using Honeywell P-8545 phosphorus spin-on dopants. We obtain uniformity of sheet resistance within 3~5% changing RPM of spin coater.

  • PDF