• 제목/요약/키워드: Single-cell RNA sequencing (scRNA-seq)

검색결과 19건 처리시간 0.02초

Unraveling flavivirus pathogenesis: from bulk to single-cell RNA-sequencing strategies

  • Doyeong Kim;Seonghun Jeong;Sang-Min Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권5호
    • /
    • pp.403-411
    • /
    • 2024
  • The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools. RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNA-seq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.

Dissecting Cellular Heterogeneity Using Single-Cell RNA Sequencing

  • Choi, Yoon Ha;Kim, Jong Kyoung
    • Molecules and Cells
    • /
    • 제42권3호
    • /
    • pp.189-199
    • /
    • 2019
  • Cell-to-cell variability in gene expression exists even in a homogeneous population of cells. Dissecting such cellular heterogeneity within a biological system is a prerequisite for understanding how a biological system is developed, homeostatically regulated, and responds to external perturbations. Single-cell RNA sequencing (scRNA-seq) allows the quantitative and unbiased characterization of cellular heterogeneity by providing genome-wide molecular profiles from tens of thousands of individual cells. A major question in analyzing scRNA-seq data is how to account for the observed cell-to-cell variability. In this review, we provide an overview of scRNA-seq protocols, computational approaches for dissecting cellular heterogeneity, and future directions of single-cell transcriptomic analysis.

Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods

  • Yeonjae Ryu;Geun Hee Han;Eunsoo Jung;Daehee Hwang
    • Molecules and Cells
    • /
    • 제46권2호
    • /
    • pp.106-119
    • /
    • 2023
  • With the increased number of single-cell RNA sequencing (scRNA-seq) datasets in public repositories, integrative analysis of multiple scRNA-seq datasets has become commonplace. Batch effects among different datasets are inevitable because of differences in cell isolation and handling protocols, library preparation technology, and sequencing platforms. To remove these batch effects for effective integration of multiple scRNA-seq datasets, a number of methodologies have been developed based on diverse concepts and approaches. These methods have proven useful for examining whether cellular features, such as cell subpopulations and marker genes, identified from a certain dataset, are consistently present, or whether their condition-dependent variations, such as increases in cell subpopulations in particular disease-related conditions, are consistently observed in different datasets generated under similar or distinct conditions. In this review, we summarize the concepts and approaches of the integration methods and their pros and cons as has been reported in previous literature.

Strategy of Patient-Specific Therapeutics in Cardiovascular Disease Through Single-Cell RNA Sequencing

  • Yunseo Jung;Juyeong Kim;Howon Jang;Gwanhyeon Kim;Yoo-Wook Kwon
    • Korean Circulation Journal
    • /
    • 제53권1호
    • /
    • pp.1-16
    • /
    • 2023
  • Recently, single cell RNA sequencing (scRNA-seq) technology has enabled the discovery of novel or rare subtypes of cells and their characteristics. This technique has advanced unprecedented biomedical research by enabling the profiling and analysis of the transcriptomes of single cells at high resolution and throughput. Thus, scRNA-seq has contributed to recent advances in cardiovascular research by the generation of cell atlases of heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and diseases. This review summarizes the overall workflow of the scRNA-seq technique itself and key findings in the cardiovascular development and diseases based on the previous studies. In particular, we focused on how the single-cell sequencing technology can be utilized in clinical field and precision medicine to treat specific diseases.

단세포 RNA 시퀀싱 데이터를 위한 가중변수 스펙트럼 군집화 기법 (One-step spectral clustering of weighted variables on single-cell RNA-sequencing data)

  • 박민영;박세영
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.511-526
    • /
    • 2020
  • 단세포 RNA 시퀀싱 데이터(single-cell RNA-sequencing data, 이하 단세포 RNA 데이터)는 세포 조직으로부터 추출한 각 단세포 별 유전자의 신호를 기록한 데이터로, 세포 간의 이질성을 파악하는 것을 주요 목적으로 한다. 그러나 단세포 RNA 데이터는 샘플링 및 기술적인 한계로 인해 결측비율이 높고, 노이즈가 크다. 이러한 이유 때문에 기존의 군집화 방법을 적용하는 데에 한계가 존재한다. 본 논문에서는 단세포 RNA 데이터 분석에서 모티브를 얻어 스펙트럼 군집화(spectral clustering) 기반의 방법을 제안한다. 특히 유사도 행렬(similarity matrix) 계산에서 유전자 별로 가중치를 부여하여 기존의 단세포 데이터 분석 방법과 차별화하였다. 제안하는 군집화 방법은 유전자별 가중치를 부여함과 동시에 세포를 군집화한다. 군집화는 반복 알고리즘을 통해 제안하는 비볼록식(non-convex optimization)을 풀어 진행한다. 또한 실데이터 적용과 시뮬레이션을 통해 제안하는 군집화 방법이 기존의 방법보다 군집을 잘 구분하는 것을 보인다.

What Single Cell RNA Sequencing Has Taught Us about Chronic Obstructive Pulmonary Disease

  • Don D. Sin
    • Tuberculosis and Respiratory Diseases
    • /
    • 제87권3호
    • /
    • pp.252-260
    • /
    • 2024
  • Chronic obstructive pulmonary disease (COPD) affects close to 400 million people worldwide and is the 3rd leading cause of mortality. It is a heterogeneous disorder with multiple endophenotypes, each driven by specific molecular networks and processes. Therapeutic discovery in COPD has lagged behind other disease areas owing to a lack of understanding of its pathobiology and scarcity of biomarkers to guide therapies. Single cell RNA sequencing (scRNA-seq) is a powerful new tool to identify important cellular and molecular networks that play a crucial role in disease pathogenesis. This paper provides an overview of the scRNA-seq technology and its application in COPD and the lessons learned to date from scRNA-seq experiments in COPD.

Single-cell and spatial transcriptomics approaches of cardiovascular development and disease

  • Roth, Robert;Kim, Soochi;Kim, Jeesu;Rhee, Siyeon
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.393-399
    • /
    • 2020
  • Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease.

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

  • Kim, Wan;Yoon, Sung Min;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.26.1-26.6
    • /
    • 2020
  • Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.

단일 세포 RNA 시퀀싱 데이터에 대한 컴퓨터 분석의 작업과정 (The Workflow for Computational Analysis of Single-cell RNA-sequencing Data)

  • 우성훈;정병출
    • 대한임상검사과학회지
    • /
    • 제56권1호
    • /
    • pp.10-20
    • /
    • 2024
  • RNA-시퀀싱은 표본에 대한 전사체 전체의 패턴을 제공하는 기법이다. 그러나 RNA-시퀀싱은 표본 내 전체 세포에 대한 평균 유전자 발현만 제공할 수 있으며, 표본 내의 이질성(heterogeneity)에 대한 정보는 제공하지 못한다. 단일 세포 RNA-시퀀싱 기술의 발전을 통해 우리는 표본의 단일 세포 수준에서 이질성과 유전자 발현의 동역학(dynamics)에 대한 이해를 할 수 있게 되었다. 예를 들어, 우리는 단일 세포 RNA-시퀀싱을 통해 복잡한 조직을 구성하는 다양한 세포 유형을 식별할 수 있으며, 특정 세포 유형의 유전자 발현 변화와 같은 정보를 알 수 있다. 단일 세포 RNA-시퀀싱은 처음 도입된 이후 많은 이들의 관심을 끌게 되었으며, 이를 활용하기 위한 대규모 생물정보학(bioinformatics) 도구가 개발되었다. 그러나 단일 세포 RNA-시퀀싱에서 생성된 빅데이터 분석에는 데이터 전처리에 대한 이해와 전처리 이후 다양한 분석 기술에 대한 이해가 필요하다. 본 종설에서는 단일 세포 RNA-시퀀싱 데이터분석과 관련된 작업과정의 개요를 제시한다. 먼저 데이터의 품질 관리, 정규화 및 차원 감소와 같은 데이터의 전 처리 과정에 대해 설명한다. 그 이후, 가장 일반적으로 사용되는 생물정보학 도구를 활용한 데이터의 후속 분석에 대해 설명한다. 본 종설은 이 분야에 관심이 있는 새로운 연구자를 위한 가이드라인을 제공하는 것을 목표로 한다.

Transcriptional Heterogeneity of Cellular Senescence in Cancer

  • Junaid, Muhammad;Lee, Aejin;Kim, Jaehyung;Park, Tae Jun;Lim, Su Bin
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.610-619
    • /
    • 2022
  • Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.