The global spread of flaviviruses has triggered major outbreaks worldwide, significantly impacting public health, society, and economies. This has intensified research efforts to understand how flaviviruses interact with their hosts and manipulate the immune system, underscoring the need for advanced research tools. RNA-sequencing (RNA-seq) technologies have revolutionized our understanding of flavivirus infections by offering transcriptome analysis to dissect the intricate dynamics of virus-host interactions. Bulk RNA-seq provides a macroscopic overview of gene expression changes in virus-infected cells, offering insights into infection mechanisms and host responses at the molecular level. Single-cell RNA sequencing (scRNA-seq) provides unprecedented resolution by analyzing individual infected cells, revealing remarkable cellular heterogeneity within the host response. A particularly innovative advancement, virus-inclusive single-cell RNA sequencing (viscRNA-seq), addresses the challenges posed by non-polyadenylated flavivirus genomes, unveiling intricate details of virus-host interactions. In this review, we discuss the contributions of bulk RNA-seq, scRNA-seq, and viscRNA-seq to the field, exploring their implications in cell line experiments and studies on patients infected with various flavivirus species. Comprehensive transcriptome analyses from RNA-seq technologies are pivotal in accelerating the development of effective diagnostics and therapeutics, paving the way for innovative treatments and enhancing our preparedness for future outbreaks.
Cell-to-cell variability in gene expression exists even in a homogeneous population of cells. Dissecting such cellular heterogeneity within a biological system is a prerequisite for understanding how a biological system is developed, homeostatically regulated, and responds to external perturbations. Single-cell RNA sequencing (scRNA-seq) allows the quantitative and unbiased characterization of cellular heterogeneity by providing genome-wide molecular profiles from tens of thousands of individual cells. A major question in analyzing scRNA-seq data is how to account for the observed cell-to-cell variability. In this review, we provide an overview of scRNA-seq protocols, computational approaches for dissecting cellular heterogeneity, and future directions of single-cell transcriptomic analysis.
With the increased number of single-cell RNA sequencing (scRNA-seq) datasets in public repositories, integrative analysis of multiple scRNA-seq datasets has become commonplace. Batch effects among different datasets are inevitable because of differences in cell isolation and handling protocols, library preparation technology, and sequencing platforms. To remove these batch effects for effective integration of multiple scRNA-seq datasets, a number of methodologies have been developed based on diverse concepts and approaches. These methods have proven useful for examining whether cellular features, such as cell subpopulations and marker genes, identified from a certain dataset, are consistently present, or whether their condition-dependent variations, such as increases in cell subpopulations in particular disease-related conditions, are consistently observed in different datasets generated under similar or distinct conditions. In this review, we summarize the concepts and approaches of the integration methods and their pros and cons as has been reported in previous literature.
Recently, single cell RNA sequencing (scRNA-seq) technology has enabled the discovery of novel or rare subtypes of cells and their characteristics. This technique has advanced unprecedented biomedical research by enabling the profiling and analysis of the transcriptomes of single cells at high resolution and throughput. Thus, scRNA-seq has contributed to recent advances in cardiovascular research by the generation of cell atlases of heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and diseases. This review summarizes the overall workflow of the scRNA-seq technique itself and key findings in the cardiovascular development and diseases based on the previous studies. In particular, we focused on how the single-cell sequencing technology can be utilized in clinical field and precision medicine to treat specific diseases.
단세포 RNA 시퀀싱 데이터(single-cell RNA-sequencing data, 이하 단세포 RNA 데이터)는 세포 조직으로부터 추출한 각 단세포 별 유전자의 신호를 기록한 데이터로, 세포 간의 이질성을 파악하는 것을 주요 목적으로 한다. 그러나 단세포 RNA 데이터는 샘플링 및 기술적인 한계로 인해 결측비율이 높고, 노이즈가 크다. 이러한 이유 때문에 기존의 군집화 방법을 적용하는 데에 한계가 존재한다. 본 논문에서는 단세포 RNA 데이터 분석에서 모티브를 얻어 스펙트럼 군집화(spectral clustering) 기반의 방법을 제안한다. 특히 유사도 행렬(similarity matrix) 계산에서 유전자 별로 가중치를 부여하여 기존의 단세포 데이터 분석 방법과 차별화하였다. 제안하는 군집화 방법은 유전자별 가중치를 부여함과 동시에 세포를 군집화한다. 군집화는 반복 알고리즘을 통해 제안하는 비볼록식(non-convex optimization)을 풀어 진행한다. 또한 실데이터 적용과 시뮬레이션을 통해 제안하는 군집화 방법이 기존의 방법보다 군집을 잘 구분하는 것을 보인다.
Chronic obstructive pulmonary disease (COPD) affects close to 400 million people worldwide and is the 3rd leading cause of mortality. It is a heterogeneous disorder with multiple endophenotypes, each driven by specific molecular networks and processes. Therapeutic discovery in COPD has lagged behind other disease areas owing to a lack of understanding of its pathobiology and scarcity of biomarkers to guide therapies. Single cell RNA sequencing (scRNA-seq) is a powerful new tool to identify important cellular and molecular networks that play a crucial role in disease pathogenesis. This paper provides an overview of the scRNA-seq technology and its application in COPD and the lessons learned to date from scRNA-seq experiments in COPD.
Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease.
Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.
RNA-시퀀싱은 표본에 대한 전사체 전체의 패턴을 제공하는 기법이다. 그러나 RNA-시퀀싱은 표본 내 전체 세포에 대한 평균 유전자 발현만 제공할 수 있으며, 표본 내의 이질성(heterogeneity)에 대한 정보는 제공하지 못한다. 단일 세포 RNA-시퀀싱 기술의 발전을 통해 우리는 표본의 단일 세포 수준에서 이질성과 유전자 발현의 동역학(dynamics)에 대한 이해를 할 수 있게 되었다. 예를 들어, 우리는 단일 세포 RNA-시퀀싱을 통해 복잡한 조직을 구성하는 다양한 세포 유형을 식별할 수 있으며, 특정 세포 유형의 유전자 발현 변화와 같은 정보를 알 수 있다. 단일 세포 RNA-시퀀싱은 처음 도입된 이후 많은 이들의 관심을 끌게 되었으며, 이를 활용하기 위한 대규모 생물정보학(bioinformatics) 도구가 개발되었다. 그러나 단일 세포 RNA-시퀀싱에서 생성된 빅데이터 분석에는 데이터 전처리에 대한 이해와 전처리 이후 다양한 분석 기술에 대한 이해가 필요하다. 본 종설에서는 단일 세포 RNA-시퀀싱 데이터분석과 관련된 작업과정의 개요를 제시한다. 먼저 데이터의 품질 관리, 정규화 및 차원 감소와 같은 데이터의 전 처리 과정에 대해 설명한다. 그 이후, 가장 일반적으로 사용되는 생물정보학 도구를 활용한 데이터의 후속 분석에 대해 설명한다. 본 종설은 이 분야에 관심이 있는 새로운 연구자를 위한 가이드라인을 제공하는 것을 목표로 한다.
Junaid, Muhammad;Lee, Aejin;Kim, Jaehyung;Park, Tae Jun;Lim, Su Bin
Molecules and Cells
/
제45권9호
/
pp.610-619
/
2022
Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.