• Title/Summary/Keyword: Single-Ring Circular Array Antenna

Search Result 4, Processing Time 0.018 seconds

Main-Lobe Recognition for Sum-Delta Monopulse of Single-Ring Circular Array Antenna (단원형배열안테나의 합차 모노펄스 주엽 식별)

  • Hyeongyu Park;Daewoong Woo;Jaesik Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.122-128
    • /
    • 2023
  • The target must be located within the main-lobe of the antenna in order to measure the direction of the target by using sum-delta monopulse technique. The most common way if the target is located within the main-lobe is to compare the amplitude of the sum channel received signal with the delta channel received signal. However, in the case of the single-ring circular array antenna, it is difficult to apply the conventional method due to its structural limitation where antenna elements do not exist in the center of the array. In this paper, we proposed a novel method to identify whether a target is located within the main-lobe by appropriately adjusting the feeding amplitude of each element constituting the single-ring circular array antenna through the particle swarm optimization method. Simulation results showed that the proposed method can determine whether the target is located within the main-lobe of the single-ring circular array antenna.

ANALYSIS OF SPATIAL AND TEMPORAL ADAPTIVE PROCESSING FOR GNSS INTERFERENCE MITIGATION

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.143-148
    • /
    • 2006
  • The goal of this paper is to analyze, through simulations and experiments, GNSS interference mitigation performance under various types of antenna structures against wideband and narrowband interferences using spatial-temporal adaptive signal processing (STAP) techniques. The STAP approach, which combines spatial and temporal processing, is a viable means of GNSS array signal processing that enhancing the desired signal quality and providing protection against interference. In this paper, we consider four types of 3D antenna array structure - Uniform Linear Array (ULA), Uniform Rectangular Array (URA), Uniform Circular Array (UCA), and the Single-Ring Cylindrical Array (SRCA) under an interference environment. Analytical evaluation and simulations are performed to investigate the system performance. This is followed by simulation GPS orbits in interfered environment are used to evaluate the STAP performance. Furthermore, experiments using a 2x2 URA hardware simulator data show that with the removal of wideband and narrowband interference through the STAP techniques, the signal tracking performance can be enhanced.

  • PDF

Direction Finding and Tracking using Single-Ring Circular Array Antenna and Space Division Table (단원형배열안테나와 공간분할테이블을 이용한 방향탐지 및 추적)

  • Park, Hyeongyu;Woo, Daewoong;Kim, Jaesik;Park, Jinsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Single-ring circular array antennas can be applied to direction finding systems in order to use nose-section in other purposes, and the interferometry is a proper direction finding method to those systems. We usually make the interferometer baseline long enough to achieve good angular accuracy. However, an interferometer with baseline longer than a half-wavelength has the ambiguity problem. In this paper, we present a novel method for solving the ambiguity problem in interferometry systems. This technique is based on the amplitude comparison method and the space division table, and it can place a target within the angular region in which the ambiguity problem does not occur by roughly estimating direction-of-arrival. The Monte Carlo simulation results show that proposed method can effectively remove the ambiguity problem in the system.

Design of Singly Fed Microstrip Antennas Having Circular Polarization (단일 급전 원형 편파 마이크로스트립 안테나 설계)

  • 오세창;전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.998-1009
    • /
    • 1999
  • In this paper, a microstrip aperture-patch antenna and a microstrip ring antenna, which have single microstrip line feeding systems for the circular polarization, are designed, and experimental results are presented at X-band. The microstrip aperture-patch antenna is characterized by its wide operating frequency range, and the microstrip ring antenna is suitable for a basic radiator in the large array antenna due to its small size. Several design parameters for these antennas are considered and analyzed to improve antenna characteristics such as VSWR bandwidth and axial ratio. Initially, the sizes of the aperture and ring radiator are determined on a basis of the cavity model, then shapes of the patch within the aperture and the inner stub of the ring are optimized using Ensemble software. Measurement results show that the aperture-patch antenna has 25% of VSWR bandwidth and 1.2dB of axial ratio at the boresight, and the ring antenna has 6.7% of VSWR bandwidth and 1.6dB of axial ratio at the boresight.

  • PDF