• Title/Summary/Keyword: Single-Lap Joint

Search Result 128, Processing Time 0.029 seconds

Analysis on the Interface Edge Crack in Aluminum Bonded Single Lap-joint (알루미늄 단순겹치기 접착이음의 에지계면균열에 대한 연구)

  • Yu, Y.C.;Park, J.H.;Jeong, E.S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.655-659
    • /
    • 1997
  • The analysis of cracks at the interface between dissimilar materilar has received a great deal of attention in recent years. In this paper we conducted the static tensile test for the aluminum bonded single lap-joint with the interface edge crack. Comparing this results, that is ultimate load and strain value of aluminum adherend by strain gauge with the fracture mechanics parameters, compliance and stress intensity factors acquied from the boundary element analysis, we concluded that there are critical value of crack length to provoke the interface fracture.

  • PDF

Variation of fracture strength of adhesive joint according to the operating temperature (사용환경온도에 따른 접착이음의 인장전단강도 변화)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Park, G.W.;Jung, B.H.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.517-520
    • /
    • 2008
  • Recently, use of adhesive bonding technology is increased to achieve the multi-material design for lightweight structure in automobile industry. In this paper, the fracture strength of adhesive has been studied with the single lap shear test conducted at different temperatures. The joint specimens are made from Al 5052 and SPRC 440 bonded with structural epoxy adhesive. The operating temperature has been considered up to $150[^{\circ}C]$ and the single lap shear test has been conducted with 5mm/min tensile rate. Fracture strength of adhesive bonded joint has been decreased with increase of operating temperature. The fracture strength at the $100[^{\circ}C]$ was shown about half of that at room temperature.

  • PDF

Evaluation of Stress Distribution and Corrosion Fatigue Strength on Spot Welded Lap Joint of Coated Thin Steel Plate (표면처리 박강판 spot용접 이음재의 응력분포와 부식피로강도 평가)

  • 배동호;임동진
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.36-45
    • /
    • 1996
  • Fatigue strength of the spot welded lap joint is considerably influenced by corrosive environments. Particularly, the chloride and the sulfide are most injurious to strength of the spot welded lap joint. Therefore, there is a need to evaluate its effect to corrosion fatigue strength for safe life design of spot welded structures. In order to evaluate their corrosion fatigue strength, corrosion fatigue tests on the spot welded lap joints of the uncoated and the coated high strength steel sheets were conducted in air and in 10% NaCl solution. Corrosion fatigue strength of the uncoated specimens were entirely lower than the coated one in NaCl solution, but those of the coated specimens in NaCl solution were lower than in air. And stress distribution in single spon welded lap joint subjected to tension-shear load was investigated by the finite element method. Using these results, we tried to evaluate corrosion fatgue strength of the various spot welded lap joints with maximum stress $\sigma_{max}$ at edge on loading side of the spot welded lap joint. We could find that corrosion fatigue strength could be quantitatively and systematically rearranged by $\sigma_{max}$.

  • PDF

Effect of Adhesive Shape on the Strength of Aluminum/Polycarbonate Joint (접착부 형상이 알루미늄/폴리카보네이트 접합재의 강도에 미치는 영향)

  • Seo, Do-Won;Kim, Hyo-Jin;Choi, Jun-Yong;Hoa, Vu cong;Lim, Jae-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1039-1044
    • /
    • 2003
  • Adhesive-bonded joints are widely used in the industry. Recently aircraft applications of adhesive bonding joints have been increased extensively in automobile and air industry. Because adhesives which are available for structural applications have been developed a lot and understanding of adhesive bonding has been improved so much. In this study, as the fundamental research of design of adhesive bonding joints, this study considers specimen shape are affect strength and durability of Al/Polymer lap joints. In this research, cross head speed difference were concerned to evaluate their effects on the adhesive strength. Cross head speed makes a change 0.05mm/min, 0.5mm/min, 5mm/min. The result is load-displacement diagram showed brittleness fracture tendency. Fracture tendency that is shown enough on stress distribution of trigonal single lap joint and trigonal edged single lap joint occur the inside of adhesive.

  • PDF

Evaluation of Welding Characteristics on 3-lap Spot Joint of Zinc Coned Seel Sheet md High Seength Steel Sheet (아연도금 강판과 고장력 강판 3겹 점용접물의 용접특성 평가)

  • Kwon Il-Hyun;Kim Hoi-Hyun;Baek Seung-Se;Yang Seong-Mo;Yu Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-49
    • /
    • 2005
  • In general, multi-lap spot weld joints are frequently present in automobile. Most research, however, has been focused on the single-lap spot weld joints until now. In this paper, tensile-shear strength tests are performed to examine the weldability of 3-lap spot joint welded by using the high strength steel sheet and the zinc coated steel sheet. The indentation depth and nugget diameter are used to propose the optimum welding conditions. The weldability is affected by the welding current and welding time for 3-lap spot joint. Meanwhile the expulsions is round to decrease with the increase of electrode force. The optimum welding conditions are presented for 3-lap spot joints of high strength steel sheet and zinc coated steel sheet.

Development of Laser Vision Sensor with Multi-line for High Speed Lap Joint Welding

  • Sung, K.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.57-60
    • /
    • 2002
  • Generally, the laser vision sensor makes it possible design a highly reliable and precise range sensor at a low cost. When the laser vision sensor is applied to lap joint welding, however. there are many limitations. Therefore, a specially-designed hardware system has to be used. However, if the multi-lines are used instead of a single line, multi-range data .:an be generated from one image. Even under a set condition of 30fps, the generated 2D range data increases depending on the number of lines used. In this study, a laser vision sensor with a multi-line pattern is developed with conventional CCD camera to carry out high speed seam tracking in lap joint welding.

  • PDF

Static Strength of Composite Single-lap Joints Using I-fiber Stitching Process with different Stitching Pattern and Angle (I-fiber Stitching 공법을 적용한 복합재료 Single-lap Joint의 Stitching 패턴과 각도에 따른 정적 강도 연구)

  • Song, Sang-Hoon;Back, Joong-Tak;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.296-301
    • /
    • 2020
  • Laminated composite materials have excellent in-plane properties, but are vulnerable in thickness directions, making it easy to delamination when bending and torsion loads are applied. Thickness directional reinforcement methods of composite materials that delay delamination include Z-pinning, Stitching, Tufting, etc., and typically Z-pinning and Stitching method are commonly used. The Z-pinning is reinforcement method by inserting metal or carbon pin in the thickness direction of prepreg, and the conventional stitching process is a method of reinforcing the mechanical properties in the thickness direction by intersecting the upper and lower fibers on the preform. In this paper, I-fiber stitching method, which complement and improve weakness of Z-pinning and Stitching method, was proposed, and the static strength of composite single-lap joints using I-fiber stitching process were evaluated. The single-lap joints were fabricated by a co-curing method using an autoclave vacuum bag process. The thickness of the composite adherend was fixed, and 5 types of specimens were manufactured with varying the stitching pattern (5×5, 7×7) and angle (0°, 45°). From the test, the failure load of the specimen reinforced by the I-fiber stitching process was increased by up to 143% compared to that of specimen without reinforcement.

The Simulation of Notch Length on the Stress Distribution in Lap Zone of Single Lap Joint with a Centered Notch

  • Yan, Zhanmou;You, Min;Yi, Xiaosu;Zheng, Xiaoling
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.18-23
    • /
    • 2006
  • The influence of the notch length on the stress distribution of mid-bondline and adherend was investigated using elasto-plastic finite element method. The results from the simulation showed that peak stress of mid-bondline decreased markedly as adherend with notch in the middle of lap zone, and the stress in the middle of joint with low stress originally increased evidently. All the peak stresses decreased firstly and increased again as the length of notch increased. The relative higher peak stress appeared at the point near the notch of adherend where might be failed previously during the loading procedure.

  • PDF

Evaluation Method of Bonded Strength Considering Stress Singularity in Adhesively Bonded Joints (응력특이성을 고려한 접착이음의 강도평가 방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.58-68
    • /
    • 1998
  • Advantages of adhesively bonded joints and techniques of weight reduction have led to increasing use of structural adhesives such as LSI(large scale integration) package, automobile, aircraft in the various industries. In spite of such wide applications of adhesively bonded joints, the evaluation method of bonding strength has not been established. Stress singularity occurs at the interface edges of adhesively bonded joints and it is required to analyze it. In this paper, the stress singularity using 2-dimensional elastic boundary element method (BEM) with the changes of the lap length and adhesive for single lap joint was analyzed, and experiments of strength evaluation were carried out. As the results, the evaluating method of bonding strength considering stress singularity at interface edges of adhesively bonded joints and stress intensity factor of interface crack have been proposed in static and fatigue test.

  • PDF

Failure Mode and Strength of Unidirectional Composite Single Lap Bonded Joints II. Failure Prediction (일방향 복합재료 Single Lap 접합 조인트의 파손 모드 및 파손 강도 II. 파손 예측)

  • Yi Young-Moo;Kim Chun-Gon;Kim Kwang-Soo
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A methodology is presented for the failure prediction of composite single-lap bonded joints considering both of composite adherend failure and bondline failure. An elastic-perfectly plastic model of adhesive and a delamination failure criterion are used in the methodology. The failure predictions have been performed using finite element method and the proposed methodology. The failure prediction results such as failure mode and strength have very good agreements with the test results of joint specimens with various bonding methods and parameters. The influence of variations in the effective strength (that is, adhesion performance) and plastic behavior of adhesive on the failure characteristics of composite bonded Joints are investigated numerically. The numerical results show that optimal joint strength is archived when adhesive and delamination failure occur in the same time.