• Title/Summary/Keyword: Single-Carrier Frequency Domain Equalizer

Search Result 22, Processing Time 0.024 seconds

Performance of Iterative Soft Decision Feedback Equalizers for Single-Carrier Transmission

  • Jeon, Taehyun;Yoon, Seokhyun;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1280-1285
    • /
    • 2017
  • In this paper, we consider iterative soft-decision feedback equalizers (sDFE), a.k.a. turbo equalizers for single-carrier transmission. Turbo equalizer takes log-likelihood ratio (LLR) feedback from channel decoder and convert the LLR into symbol estimates and variances to be used for the LLR update at the sDFE. Specifically, we consider both time domain and frequency-domain sDFE and compare their performances. The results shows that frequency-domain sDFE performs better than time-domain one and also that considerable gain can be obtained especially when the channel has deep nulls.

ISI and PAPR Immune IEEE 802.11p Channels Based on Single-Carrier Frequency Domain Equalizer

  • Ali, Ahmed;Dong, Wang;Renfa, Li;Eldesouky, Esraa
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5513-5529
    • /
    • 2016
  • Doppler Effect is a prominent obstacle in vehicular networks, which dramatically increase the Bit-Error-Rate (BER). This problem is accompanied with the presence of the Orthogonal Frequency Division Multiplexing (OFDM) systems in which the Doppler shift interrupts the subcarriers orthogonality. Additionally, Inter-Symbol Interference (ISI) and high Peak-to-Average Power Ratio (PAPR) are likely to occur which corrupt the received signal. In this paper, the single-carrier combined with the frequency domain equalizer (SC-FDE) is utilized as an alternative to the OFDM over the IEEE 802.11p uplink vehicular channels. The Minimum Mean Squared Error (MMSE) and Zero-Forcing (ZF) are employed in order to study the impact of these equalization techniques along with the SC-FDE on the propagation medium. In addition, we aim to enhance the BER, improve the transmitted signal quality and achieve ISI and PAPR mitigation. The proposed schemes are investigated and we found that the MMSE outperforms the ZF equalization under different Doppler shift effects and modulations.

Analysis of Performance for SC-FDE Systems Using Proportional Adaptive Equalizer in $2GHz{\sim}10GHz$ Frequency Radio Channel Models ($2GHz{\sim}10GHz$ 무선 채널 환경에서 비례 적응형 등화기를 이용한 SC-FDE 시스템 구현과 성능분석)

  • Yang, Yong-Seok;Lee, Kyu-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.447-453
    • /
    • 2007
  • In the multipath fading channel, OFDM(Orthogonal Frequency Division Multiplexing)system possess the characteristics of ISI/ICIwith prefix, but a weak point of circuit complexity and PAPR problem. SC-FDE(Single Carrier with Frequency Domain Equalization) performance is similar to OFDM system, but equalizer is complex in frequency domain. In this paper, simple proportional equalizer offer for SC-FDE system, it useful method in the $2GHz{\sim}\;10GHz$ channel model such as indoor, outdoor, SUI. It prove using MATLAB simulation, speed faster then OFDM system, reduce terminal complexity in same test condition.

Performance of SC-FDE System in UWB Communications with Imperfect Channel Estimation

  • Wang, Yue;Dong, Xiaodai
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.466-472
    • /
    • 2007
  • Single carrier block transmission with frequency domain equalization(SC-FDE) has been shown to be a promising candidate in ultra-wideband(UWB) communications. In this paper, we analyze the performance of SC-FDE over UWB communications with channel estimation error. The probability density functions of the frequency domain minimum mean-squared error(MMSE) equalizer taps are derived in closed form. The error probabilities of single carrier block transmission with frequency domain MMSE equalization under imperfect channel estimation are presented and evaluated numerically. Compared with the simulation results, our semi-analytical analysis yields fairly accurate bit error rate performance, thus validating the use of the Gaussian approximation method in the performance analysis of the SC-FDE system with channel estimation error.

Elimination of Residual Phase Rotation Errors in SC-FDE Received Signals (SC-FDE 수신 신호의 잔여 위상회전에러 제거)

  • Kim, Ji-Heon;Kim, Whan-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.101-102
    • /
    • 2006
  • Similar to Orthogonal Frequency Division Multiplexing (OFDM), a Single Carrier with Frequency Domain Equalization (SC-FDE) system is computationally efficient since equalization is performed on a block of data in the frequency domain. In coherent QAM schemes, the mean phase rotation error caused by the residual carrier frequency offset may lead to serious degradation. When the frequency equalizer is combined with the mean phase error tracking algorithm, its performance can be enhanced noticeably.

  • PDF

A Study on Performance Enhancement of Selection Combined Hybrid Sequential Deconvolution and SC-FDE for Single Carrier System (선택적 결합 기법을 활용하여 순차적 역컨벌루션과 단일반송파 수신기를 하이브리드하게 사용한 단일반송파 시스템 성능 향상에 관한 연구)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.305-310
    • /
    • 2012
  • This paper proposes a selection combined hybrid sequential deconvolution and single carrier modulation with a zero forcing frequency domain equalizer for single carrier transmission system in order to enhance performance. Selection combining method is an algorithm of antenna space diversities, the receiver can choose the best channel environment only with the increase of the number of antennas, but a baseband structure is the same as the traditional receiver architecture. Simulation results show that the proposed algorithm has a better performance rather than the traditional single carrier transmission with a frequency domain equalizer.

MF based Frequency Domain Iterative Equalization for Single-Carrier Transmission with EST Pre-coder (EST Pre-coder를 가진 Single Carrier 전송을 위한 MF기반의 주파수영역 반복 등화기법)

  • Choi, Yun-Seok;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.295-301
    • /
    • 2011
  • In [1], it has been shown that the energy spreading transform (EST) based iterative equalizer (IE) could enhance its performance by improving the reliability of the decision feedback symbols without the help of the complicated channel decoder. In the matched filter (MF) based IE proposed in [1], however, its feedforward filter (FFF) has been designed in the frequency domain while its feedback filter (FBF) in the time domain. So its complexity increases proportional to the channel memory length. To solve this problem, in this paper, both FFF and FBF are designed in the frequency domain. This enables the proposed frequency domain IE (FD-IE) to achieve the lower complexity over the conventional method in the highly dispersive channel. In addition, simulation results demonstrate that the BER performance of the proposed method is the same as the conventional.

Single Carrier Frequency Domain Equalization in 3-slot Based Amplify-and-Forward Relaying Network for Shadow Area (음영 지역을 위한 3-슬롯 기반의 AF 방식 중계기 네트워크에서의 단일 반송파 주파수 대역 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.9-16
    • /
    • 2012
  • In order to extend cell coverage and to cope with shadow areas, a relay-assisted wireless communications system has been widely studied. In this paper, we propose new equalization method for single carrier (SC) frequency domain equalizer (FDE) in amplify-and-forward (AF) relaying multi-path networks to improve the performance at shadow areas. The performance of SC-FDE system in 3-slot based multi-path networks can be improved considerably with the diversity gain which we obtain by equalizing the combined signal from relays by means of the minimum mean square error (MMSE) criteria. We find the weighting coefficients of maximum ratio combining (MRC) and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying multi-path networks. Simulation results show that the proposed system considerably outperforms the conventional SC-FDE system.

MRC MMSE Equalization for SC-FDE in Amplify-and-Forward Relaying Networks (AF 방식 중계기 네트워크에서의 SC-FDE를 위한 MRC MMSE 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • Relay-assisted multiple input multiple output (MIMO) technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose maximum ratio combining (MRC) minimum mean-square-error (MMSE) equalization for single carrier-frequency domain equalizer (SC-FDE) in amplify-and-forward (AF) relaying networks. The performance of SC-FDE system can be improved considerably by achieving both the diversity gain and the MMSE equalization gain when the signals from source-destination (S->D) and source-relay-destination (S->R->D) are combined and equalized by means of the MMSE criteria. We find the weighting coefficients of MRC combining and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying networks. Simulation results show that the proposed relay-based system considerably outperforms the conventional SC-FDE system.

Design of a Frequency Domain Equalizer Algorithm for MBOK DS-UWB System (MBOK DS-UWB 시스템을 위한 주파수 영역 등화기 알고리즘의 설계)

  • Kang, Shin-Woo;Im, Se-Bin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1034-1041
    • /
    • 2007
  • In this paper, we propose a FD USE (frequency domain minimum mean square error) equalizer algorithm for MBOK DS-UWB (M-ary bi-orthogonal keying direct sequence UWB) systems considered as a PHY proposal for high-speed wireless communication in IEEE 802.15.TG3a. The conventional FD MMSE equalization scheme has a structural limit due to insertion of the cyclic prefix (CP) in all transmit packets, but the proposed scheme is able to equalize the channel effect without CP. In order to overcome channel estimation error by multipath delay, we introduce a moving FFT and a moving average scheme. Compared with conventional FD MMSE equalizer and the traditional TD (time domain) MMSE-RAKE receiver, the proposed FD MMSE equalizer has better BER performance and we demonstrate this result by computer simulation.