• Title/Summary/Keyword: Single-Balanced Mixer

Search Result 54, Processing Time 0.121 seconds

2.45GHz CMOS Up-conversion Mixer & LO Buffer Design

  • Park, Jin-Young;Lee, Sang-Gug;Hyun, Seok-Bong;Park, Kyung-Hwan;Park, Seong-Su
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 2002
  • A 2.45GHz double-balanced modified Gilbert-type CMOS up-conversion mixer design is introduced, where the PMOS current-reuse bleeding technique is demonstrated to be efficient in improving conversion gain, linearity, and noise performance. An LO buffer is included in the mixer design to perform single-ended to differential conversion of the LO signal on chip. Simulation results of the design based on careful modeling of all active and passive components are examined to explain in detail about the characteristic improvement and degradation provided by the proposed design. Two kinds of chips were fabricated using a standard $0.35\mu\textrm$ CMOS process, one of which is the mixer chip without the LO buffer and the other is the one with it. The measured characteristics of the fabricated chips are quite excellent in terms of conversion gain, linearity, and noise, and they are in close match to the simulation results, which demonstrates the adequacy of the modeling approach based on the macro models for all the active and passive devices used in the design. Above all the benefits provided by the current-reuse bleeding technique, the improvement in noise performance seems most valuable.

Design of Double Bond Down Converting Mixer Using Embeded Balun Type (발룬 내장형 이중대역 하향 변환 믹서 설계 및 제작)

  • Lee, Byung-Sun;Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.141-147
    • /
    • 2008
  • This paper describes the design of frequency down converting Mixer in the receiver to use compound semiconductor and CMOS product process. The basic theory and structure of frequency down converting Mixer is surveyed, and we design mixer circuit with active balun which use the compound semiconductor and CMOS process. This mixer convert a single ended signal to differential signal at input port of RF and LO instead of matching circuit to get dual band balanced mixer structure and characteristic broadband. This designed mixer has a conversion gain $-1{\sim}-6[dB]$ at $2{\sim}6[GHz]$ bandwidths. However, the simulation of the designed mixer with active balun has the result of a 7[dB] conversion gain for -2[dBm] LO input power and -10[dBm] input P1[dB] at 5.8[GHz].

An MMIC Broadband Image Rejection Downconverter Using an InGaP/GaAs HBT Process for X-band Application

  • Lee Jei-Young;Lee Young-Ho;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • In this paper, we demonstrate a fully integrated X-band image rejection down converter, which was developed using InGaP/GaAs HBT MMIC technology, consists of two single-balanced mixers, a differential buffer amplifier, a differential YCO, an LO quadratue generator, a three-stage polyphase filter, and a differential intermediate frequency(IF) amplifier. The X-band image rejection downconverter yields an image rejection ratio of over 25 dB, a conversion gain of over 2.5 dB, and an output-referred 1-dB compression power$(P_{1dB,OUT})$ of - 10 dBm. This downconverter achieves broadband image rejection characteristics over a frequency range of 1.1 GHz with a current consumption of 60 mA from a 3-V supply.

Broadband Mixer with built-in Active Balun for Dual-band WLAN Applications (이중대역 무선랜용 능동발룬 내장 광대역 믹서 설계)

  • Lee, Kang-Ho;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.261-264
    • /
    • 2005
  • This paper presents the design of a down-conversion mixer with built-in active balun integrated in a $0.25\;{\mu}m$ pHEMT process. The active balun consists of series-connected common-gate FET and common-source FET. The designed balun achieved broadband characteristics by optimizing gate-width and bias condition for the reduction in parasitic effect. From DC to more than 6GHz, the active balun shows the phase error of less than 3 degree and the gain error of less than 0.4 dB. A single-balanced down-conversion mixer with built-in broadband active balun has been designed with optimum width, load resistor and bias for conversion gain and without any matching component for broadband operating. The designed mixer whose size of including on-chip bias circuit is $1\;mm{\times}1\;mm$ shows the conversion gain of better than 7 dB from 2 GHz to 6 GHz and $P_{1dB}$ of -10 dBm at 5.8 GHz

  • PDF

Phase Conjugator for Retrodirective Array Antenna Applications (능동 역지향성 배열 안테나용 공액 위상변위기)

  • Chun Joong-Chang;Jeung Deuk-Soo;Lee Byung-Rho;Tack Han-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.134-138
    • /
    • 2005
  • In this paper, we have developed a new type of the microwave phase conjugator for the active retrodirective antenna array. The circuit topology is consisted of a 2-port structure to avoid the complexity of LO and RF signal combination and matching, using the cascade connection of two single-ended mixers. The operating frequencies are 4.0 GHz, 2.01 GHz and 1.99 GHz for LO, RF, and IF, respectively. Conversion loss is measured to be -7 dB and 1-dB compression point 15 dBm with the LO power of 9 dBm. For the most important parameter, the isolation between RE leakage and IF signal is as high as 25 dB.

5.25GHz Image Rejection Low Noise Amplifier and Mixer for Wireless LAN (무선랜을 위한 5.25GHz 이미지 제거 저 잡음 증폭기 및 믹서 설계)

  • Lee, Jun-Jae;Kong, Dong-Ho;Choo, Sung-Joong;Park, Jung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.893-896
    • /
    • 2005
  • This paper describes Low Noise Amplifier(LNA) and Single Balanced Mixer(SBM) with monolithic image rejection notch filter using 0.5um MESFET process. LNA, Notch filter, and SBM were integrated on a chip. This chip does not need off chip SAW filter, thereby reducing the overall cost and system volume. The LNA with Notch filter provides a gain of 15dB, noise figure of 1.2dB, and image rejection ratio of -74dB. The SBM has a conversion gain of 6dB.

  • PDF

High-$T_{c}$ Superconducting down-converter for Millimeterwave (밀리미터파용 고온초전도 다운-컨버터의 제작 및 고주파 특성 평가)

  • 강광용;김호영;김철수;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.358-361
    • /
    • 2002
  • The millirneterwave high-T$_{c}$ superconducting(HTS) down-converter sub-system with the HTS/III-V integrated mixer as the central device is demonstrated first. The constituent components of HTS down-converter sub-system such as a single balanced type integrated mixer with rat-race coupler, a cavity type bandpass filter (26 GHz), and a HTS planar lowpass filter(1 GHz), semiconductor LNA and IF-power amplifier, a driving electronic module for A/D converter, and a Stirling type mini-cooler module were combined into an International stand- and rack of 19-inch. From the RF(-61 dBm, 26.5GHz)and LO signal(-1 dBm, 25.6 GHz), IF signal(0dBm, 0.9 GHz) agreed with simulated results is obtained.d.

  • PDF

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

An Integrated High Linearity CMOS Receiver Frontend for 24-GHz Applications

  • Rastegar, Habib;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.595-604
    • /
    • 2016
  • Utilizing a standard 130-nm CMOS process, a RF frontend is designed at 24 GHz for automotive collision avoidance radar application. Single IF direct conversion receiver (DCR) architecture is adopted to achieve high integration level and to alleviate the DCR problem. The proposed frontend is composed of a two-stage LNA and downconversion mixers. To save power consumption, and to enhance gain and linearity, stacked NMOS-PMOS $g_m$-boosting technique is employed in the design of LNA as the first stage. The switch transistors in the mixing stage are biased in subthreshold region to achieve low power consumption. The single balanced mixer is designed in PMOS transistors and is also realized based on the well-known folded architecture to increase voltage headroom. This frontend circuit features enhancement in gain, linearity, and power dissipation. The proposed circuit showed a maximum conversion gain of 19.6 dB and noise figure of 3 dB at the operation frequency. It also showed input and output return losses of less than -10 dB within bandwidth. Furthermore, the port-to-port isolation illustrated excellent characteristic between two ports. This frontend showed the third-order input intercept point (IIP3) of 3 dBm for the whole circuit with power dissipation of 6.5 mW from a 1.5 V supply.

A Highly Linear Self Oscillating Mixer Using Second Harmonic Injection (2차 고조파 주입을 사용한 고 선형성의 자체 발진 혼합기)

  • Kim, Min-Hoe;Cho, Choon-Sik;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.682-690
    • /
    • 2012
  • In this paper, a highly linear self oscillating mixers(SOM) using second harmonic injections are presented. The H-slot defected ground structure(DGS) is designed as a balanced resonator for oscillation in the proposed SOM. Since the H-slot DGS resonator achieves a high Q factor, it is a suitable structure to provide low phase noise for the oscillator. The single balanced mixer is utilized in this work and it provides good LO-RF isolation since balanced LO signals are suppressed at the RF input port. In order to inject the second harmonic of the IF, we propose two different methods using feedback loops. In the first method, IF achieves a 3.08 dB conversion gain at 226 MHz with input power of -20 dBm at 5 GHz RF input signal. The IF achieves 2 dB conversion gain at 423 MHz with the input power of -20 dBm at 5.2 GHz RF input signal in the second method. The measured IMD3s are 61.8 dB and 65 dB for the each method. These SOMs present improved linearity compared to that without the second harmonic injection because IMD3s are improved by 18. dB and 21 dB for each method.