• Title/Summary/Keyword: Single walled carbon nanotube

Search Result 214, Processing Time 0.033 seconds

The Effect of Surface Modification on the Disperisibilities and the Thermal Conductivities of Single-Walled Carbon Nanotube (SWCNT)/Epoxy Composites (표면 기능화된 단일벽 탄소나노튜브/에폭시 복합체의 분산 및 열전도도 특성)

  • Kim, Jiwon;Im, Hyungu;Kim, Jooheon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.266-271
    • /
    • 2011
  • Single-walled carbon nanotube (SWCNT)/Epoxy composites were prepared for improving thermal conductivities and dispersion of SWCNTs in the epoxy matrix. Composites obtained different types of SWCNTs which are pristine and functionalized of the SWCNTs by acid and amine treatments. Three types of SWCNTs were dispersed in diglycidyl ether of bisphenol A (DGEBA) and bisphenol F (DGEBF). Enhanced interaction between functional groups on SWCNT and epoxy resins was evidenced by an improvement in the dispersion of the SWCNTs in the epoxy matrix. Thermal conductivity of composites containing acid SWCNTs were found to be much better than those containing pristine and amine treated SWCNTs.

Molecular Dynamics Simulations on the Mechanical Behavior of Carbon Nanotube (탄소나노튜브의 역학적 거동에 관한 분자동역학 전산모사)

  • Park, Jong-Youn;Lee, Young-Min;Jun, Suk-Ky;Kim, Sung-Youb;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1083-1088
    • /
    • 2003
  • Molecular dynamics simulations on the deformation behavior of single-walled carbon nanotube are performed. Formation energies of CNT's by interatomic potentials are computed and compared with ab initio results. Bending and axial compression are applied under lattice statics and NVT ensemble conditions. Specifically, we focus on the mechanism of kink formation in bending. The simulation results are comprehensively explained in the framework of atomistic energetics. The effects of temperature and chirality on the deformation of carbon nanotube are also studied.

  • PDF

A Study on Biomaterial Detection Using Single-Walled Carbon Nanotube Based on Interdigital Capacitors (인터디지털 커패시트 기반의 단일벽 탄소 나노 튜브를 이용한 바이오 물질 검출에 관한 연구)

  • Lee, Hee-Jo;Lee, Hyun-Seok;Yoo, Kyung-Hwa;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.891-898
    • /
    • 2008
  • In this paper, we have studied on the possibilities of the biomaterial detection using single-walled carbon nanotube (SWNT) based on interdigital capacitors. For the four different configurations, such as interdigital capacitor, SWNT in the $5\;{\mu}m$ gap interdigital capacitor, biotinlated SWNT, and biotin and sreptavidin immobilization cases, the resonant frequency has been measured as 10.02 GHz, 11.02 GHz, 10.82 GHz, and 10.22 GHz, respectively. Assuming that the resonant frequency reflects the capacitance changes due to binding of two-different permittivity biomaterials, we have suggested an equivalent circuit model based on measured results, confirming the capacitance changes. For biotinlated SWNT and biotin-streptavidin immobilization cases, the capacitances are $C_b=0.55\;pF$ and $C_s=0.95\;pF$. In this work, we experimentally demonstrated that the specific biomaterial binding causes the capacitance change and therefore this gives rise to resonant frequency. In conclusion, we confirmed the sufficient possibility as CNT biosensor because an analyte biomaterial(streptavidin) binding arouses a considerable resonant frequency change.

Finite Element Modeling of a Carbon Nanotube Actuator (탄소나노튜브 엑츄에이터의 설계에서의 유한요소모델링 기법)

  • 김정택;현석정;김철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.559-562
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model

  • Semmah, Abdelwahed;Beg, O. Anwar;Mahmoud, S.R.;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2014
  • In the present article, the thermal buckling of zigzag single-walled carbon nanotubes (SWCNTs) is studied using a nonlocal refined shear deformation beam theory and Von-Karman geometric nonlinearity. The model developed simulates both small scale effects and higher-order variation of transverse shear strain through the depth of the nanobeam. Furthermore the present formulation also accommodates stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. The equivalent Young's modulus and shear modulus for zigzag SWCNTs are derived using an energy-equivalent model. The present study illustrates that the thermal buckling properties of SWCNTs are strongly dependent on the scale effect and additionally on the chirality of zigzag carbon nanotube. Some illustrative examples are also presented to verify the present formulation and solutions. Good agreement is observed.

A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation

  • Hadji, Lazreg;Zouatnia, Nafissa;Meziane, Mohamed Ait Amar;Kassoul, Amar
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.509-518
    • /
    • 2017
  • The objective of the present paper is to investigate the bending behavior with stretching effect of carbon nanotube-reinforced composite (CNTRC) beams. The beams resting on the Pasternak elastic foundation, including a shear layer and Winkler spring, are considered. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of bending analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the bending responses of CNTRC beam are discussed.

Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

  • Kim, Seul-Ki;Bae, Si-Ra;Ahmed, Mohammad Shamsuddin;You, Jung-Min;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1215-1220
    • /
    • 2011
  • An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of $1.0{\times}10^{-7}$ to $1.0{\times}10^{-5}$ M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA.

Preparation of Bucky Paper using Single-walled Carbon Nanotubes Purified through Surface Functionalization and Investigation of Their Field Emission Characteristics (기능화에 의한 단일벽 탄소나노튜브 정제 및 페이퍼 제조와 전계방출 특성 연구)

  • Goak, Jeung-Choon;Lee, Seung-Hwan;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • Single-walled carbon nanotubes (SWCNTs) were currently produced together with some contaminants such as a metallic catalyst, amorphous carbon, and graphitic nanoparticles, which should be sometimes purified for their applications. This study aimed to develop efficient, scalable purification processes but less harmful to SWCNTs. We designed three-step purification processes: acidic treatment, surface functionalization and soxhlet extraction, and heat treatment. During the soxhlet extraction using tetrahydrofuran, specifically, carbon impurities could be easily expelled through a glass thimble filter without any significant loss of CNTs. Finally, SWCNTs were left as a bulky paper on the filter through membrane filtration. Vertically aligned SWCNTs on one side of bulky paper were well developed in a speparation from the filter paper, which were formed by being sucked through the filter pores during the pressurized filtration. The bucky paper showed a very high peak current density of field emission up to $200\;mA/cm^2$ and uniform field emission images on phosphor, which seems very promising to be applied to vacuum microelectronics such as microwave power amplifiers and x-ray sources.

Thermal Conduction in Transparent Carbon Nanotube Films

  • Zhu, Lijing;Kim, Duck-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.201-201
    • /
    • 2012
  • Using materials with high thermal conductivity is a matter of great concern in the field of thermal management. In this study, we present our experimental results on an important physical property of carbon nanotube (CNT) films, two-dimensional thermal conductivity obtained by using an optical method based on Raman spectroscopy. We prepared four kinds of CNT films to investigate the effect of CNT type on heat spreading performance of films. This first comparative study using the optical method shows that the arc-discharge single-walled carbon nanotubes yield the best heat spreading film. And we observed thermal conductivity values of CNT films with various transmittances and found that the Raman method works as long as the sample is a transparent film. This study provides useful information on characterization of thermal conduction in transparent CNT films and could be an important step toward high-performance carbon-based heat spreading films.

  • PDF

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.