• Title/Summary/Keyword: Single shell

Search Result 326, Processing Time 0.042 seconds

Coherence Analysis of Noise and Vibration For Reciprocating Compressor (왕복동 압축기의 소음 및 진동 기여도 분석)

  • Lee, Dae-Sung;Hwang, Won-Gul;Lee, You-Yub;Im, Hyung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.875-880
    • /
    • 2002
  • It is necessary to determine the vibration source and its transmission paths in order to develop a low-noise compressor. Through the use of multiple-input/single-output(MISO) mode1, the transmission paths of vibration within a reciprocating compressor have been investigated. In order to identify the transmission path, we measure the accelerations of the block and transverse vibrations of the line discharge tube. As outputs, vibrations of compressor shell were measured at three positions; cylinder head, one near the suction line, and the top of upper shell. The partial coherence function and transfer function are obtained ken the measured data, and the results are observed in order to determine vibration source and its influence on the shell vibration.

  • PDF

Buckling Analysis of Laminated Composite Plate and Shell Structures considering a Higher-Order Shear Deformation (고차전단변형을 고려한 복합적층판 및 쉘구조의 좌굴해석)

  • Lee, Won Hong;Yoon, Seok Ho;Han, Seong Cheon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.3-11
    • /
    • 1997
  • Laminated composite shells exhibit properties comsiderably different from those of the single-layer shell. Thus, to obtain the more accurate solutions to laminated composite shells ptoblems, effects of shear strain should be condidered in analysis of them. A higher-order shear deformation theory requires no shear correction coefficients. This theory is used to determine the buckling loads of elastic shells. The theory accounts for parabolic distribution of the transverse shear through the thickness of the shell and rotary inertia. Exact solutions of simply-supported shells are obtained and the results are compared with the exact solutions of the first-order shear deformation theory, and the classical theory. The present theory predicts the buckling loads more accurately when compared to the first -order and classical theory.

  • PDF

Exchange Bias in Cr2O3/Fe3O4 Core/Shell Nanoparticles

  • Yun, B.K.;Koo, Y.S.;Jung, J.H.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.147-149
    • /
    • 2009
  • We report the exchange bias in antiferromagnet/ferrimagnet $Cr_2O_3/Fe_3O_4$ core/shell nanoparticles. The magnetic field hysteresis curve for $Cr_2O_3/Fe_3O_4$ nanoparticles after field-cooling (FC) clearly showed both horizontal ($H_{EB}{\sim}$610 Oe) and vertical (${\Delta}M{\sim}$5.6 emu/g) shifts at 5 K. These shifts disappeared as the temperature increased toward the Neel temperature of $Cr_2O_3\;(T_N{\sim}$307 K). The $H_{EB}\;and\;{\Delta}M$ values were sharply decreased between the $1^{st}\;and\;the\;2^{nd}$ magnetic field cycles, and then slowly decreased with further cycling. These results are discussed in terms of the formation of single domains with pinned, uncompensated, antiferromagnetic spin and their evolution into multi-domains with cycling.

A MULTI-WAVELENGTH STUDY OF 30 DORADUS COMPLEX IN THE LARGE MAGELLANIC CLOUD

  • Kim, Sung-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.3
    • /
    • pp.365-370
    • /
    • 2005
  • We have made a multi-wavelength study of the X-ray bright giant shell complex 30 Doradus in the Large Magellanic Cloud (LMC). This is the one of the largest H II complexes in the Local Group. The Australia Telescope Compact Array (ATCA) and the Parkes 64-m single dish observations reveal that the distribution and internal motions of H I gas show the effects of fast stellar winds and supernova blasts. The hot emitting gas within the 30 Doradus complex and the entire giant H II complex are encompassed by an expanding H I shell. We investigate the dynamical age of this H I shell and compare to the age of starbursts occurred in the 30 Doradus nebula using the radiative transfer model and the infrared properties.

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

3D Hierarchical Heterostructure of TiO2 Nanorod/Carbon Layer/NiMn-Layered Double Hydroxide Nanosheet

  • Zhao, Wei;Jung, Hyunsung
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.6
    • /
    • pp.365-371
    • /
    • 2018
  • 1D core-shell nanostructures have attracted great attention due to their enhanced physical and chemical properties. Specifically, oriented single-crystalline $TiO_2$ nanorods or nanowires on a transparent conductive substrate would be more desirable as the building core backbone. However, a facile approach to produce such structure-based hybrids is highly demanded. In this study, a three-step hydrothermal method was developed to grow NiMn-layered double hydroxide-decorated $TiO_2$/carbon core-shell nanorod arrays on transparent conductive fluorine-doped tin oxide (FTO) substrates. XRD, SEM, TEM, XPS and Raman were used to analyze the obtained samples. The in-situ fabricated hybrid nanostructured materials are expected to be applicable for photoelectrode working in water splitting.

Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load

  • Do, Quang Chan;Pham, Dinh Nguyen;Vu, Dinh Quang;Vu, Thi Thuy Anh;Nguyen, Dinh Duc
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.243-259
    • /
    • 2019
  • This study deals with the nonlinear static analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) truncated conical shells subjected to axial load based on the classical shell theory. Detailed studies for both nonlinear buckling and post-buckling behavior of truncated conical shells. The truncated conical shells are reinforced by single-walled carbon nanotubes which alter according to linear functions of the shell thickness. The nonlinear equations are solved by both the Airy stress function and Galerkin method based on the classical shell theory. In numerical results, the influences of various types of distribution and volume fractions of carbon nanotubes, geometrical parameters, elastic foundations on the nonlinear buckling and post-buckling behavior of FG-CNTRC truncated conical shells are presented. The proposed results are validated by comparing with other authors.

Cubic zirconia single crystal growth using shell by skull melting method (스컬용융법에 의한 패각을 이용한 큐빅지르코니아 단결정 성장)

  • Jung, Jin-Hwa;Yon, Seog-Joo;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.124-128
    • /
    • 2013
  • In this research, cubic zirconia is synthesized with a refined CaO from shells as a stabilizer through Skull melting method. The proper process time and concentration are defined by Hydration reaction to produce the refined CaO after two different treatments using 0.1 mol% of HCl respectively with Cockle shell. The highest purity of CaO is reached when the shell is immersed in 1 mol% HCl. In Hydration reaction step, the pure $Ca(OH)_2$ is produced at $45^{\circ}C$ for 24 hours. The highest purity of CaO is measured when the $Ca(OH)_2$ is treated by heat at $1200^{\circ}C$ for 5 hours. The single crystals are grown through Skull melting method by adding the different contents of the refined CaO from 10 mol% to 30 mol% into $ZrO_2$. The frequency of High-frequency oscillator used for Skull melting method is 3.4 MHz. The descending speed of the single crystal is 3 mm/hour. The grown length of the single crystal is 4 cm. As a result of this study, 15 mol% of CaO has the best crystallinity.

Response of triceratops to impact forces: numerical investigations

  • Chandrasekaran, Srinivasan;Nagavinothini, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.349-368
    • /
    • 2019
  • Triceratops is one of the new generations of offshore compliant platforms suitable for ultra-deepwater applications. Apart from environmental loads, the offshore structures are also susceptible to accidental loads. Due to the increase in the risk of collision between ships and offshore platforms, the accurate prediction of structural response under impact loads becomes necessary. This paper presents the numerical investigations of the impact response of the buoyant leg of triceratops usually designed as an orthogonally stiffened cylindrical shell with stringers and ring frames. The impact analysis of buoyant leg with a rectangularly shaped indenter is carried out using ANSYS explicit analysis solver under different impact load cases. The results show that the shell deformation increases with the increase in impact load, and the ring stiffeners hinder the shell damage from spreading in the longitudinal direction. The response of triceratops is then obtained through hydrodynamic response analysis carried out using ANSYS AQWA. From the results, it is observed that the impact load on single buoyant leg causes periodic vibration in the deck in the surge and pitch degrees of freedom. Since the impact response of the structure is highly affected by the geometric and material properties, numerical studies are also carried out by varying the strain rate, and the location of the indenter and the results are discussed.

Chorion Gene Expression in the Cellular Differentiation and Accumulation of Chorion Protein of Silkmoth, Bombyx mandarina I. Specific Structures of Egg-shell and Chorion Protein (한국산 멧누에 (Bombyx mandarina)에 있어서 난각유전자의 형질발현. I. 난각구조의 특이성과 Chorion 단백질)

  • 노시갑
    • Korean journal of applied entomology
    • /
    • v.29 no.3
    • /
    • pp.157-164
    • /
    • 1990
  • The surface patterns and the structures of transverse section of the egg-shell of the sikmoth, Bombyx mandarina, have been described by scanning electron microscope. Three spatially differentiated cross section, called lamellar, conic pillar and cover layers, are found on the mature eg-shell. Silkmoth chorion proteins were detected more than 80 components from a single chorion by two-dimensional electrophoresis. Major protein components of the egg-shell have bee identified on the basis of their isoelectric points and molecular weights, pH 4-6 and 6-30 kd. Several protein components are found entirely or predominantly in th cover layers.

  • PDF