• Title/Summary/Keyword: Single shaft

Search Result 168, Processing Time 0.027 seconds

Conceptual Design of a Turbopump adopting a planetary gear system (유성기어를 적용한 터보펌프의 개념설계)

  • Kim, Jin-Han;Jeong, Eun-Hwan;Choi, Chang-Ho;Jeon, Seong-Min;Kim, Jin-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.605-609
    • /
    • 2010
  • The present paper describes a conceptual design of a turbopump which employs a planetary gear system. In a launcher system, weight is one of the most important design factor. In turbopump systems using propellants such as kerosene, or methane, single shaft systems are employed because of simplicity. One of the main disadvantages of this system, however, is the same rotational speed of both pumps and a turbine which forces to operate under non-optimum condition. To operate each component in optimum or favorable rotational speeds, a planetary gear system may be the best choice when the compactness and efficiency of a turbopump system is considered. A conceptual design and feasibility of the turbopump system adopting a planetary gear system is suggested.

  • PDF

Method for estimating workability of self-compacting concrete using mixing process images

  • Li, Shuyang;An, Xuehui
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.781-798
    • /
    • 2014
  • Estimating the workability of self-compacting concrete (SCC) is very important both in laboratories and on construction site. A method using visual information during the mixing process was proposed in this paper to estimate the workability of SCC. First, fourteen specimens of concrete were produced by a single-shaft mixer. A digital camera was used to record all the mixing processes. Second, employing the digital image processing, the visual information from mixing process images was extracted. The concrete pushed by the rotating blades forms two boundaries in the images. The shape of the upper boundary and the vertical distance between the upper and lower boundaries were used as two visual features. Thirdly, slump flow test and V-funnel test were carried out to estimate the workability of each SCC. Finally, the vertical distance between the upper and lower boundaries andthe shape of the upper boundary were used as indicators to estimate the workability of SCC. The vertical distance between the upper and lower boundaries was related to the slump flow, the shape of the upper boundary was related to the V-funnel flow time. Based on these relationships, the workability of SCC could be estimated using the mixing process images. This estimating method was verified by three more experiments. The experimental results indicate that the proposed method could be used to automatically estimate SCC workability.

High-Stiffness Structure Design of 8-Axis Multi-tasking Machine for Automotive Powertrain Shafts (자동차 파워 트레인 샤프트 가공용 8축 복합가공기의 고 강성 구조설계에 관한 연구)

  • Moon, Dong-Ju;Cho, Jun-Hyun;Choi, Yun-Seo;Hwang, In-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • The development of an exclusive 8-axis multi-tasking machine to finish multiple cutting processes by a single piece of power equipment for securing the high-precision machining and high productivity of the series of shafts (a core part of the automotive powertrain that delivers engine power) is needed. The rigidity of the structure must be improved and the weight of the structure must be reduced to develop a multi-tasking machine with high precision and high productivity. In this paper, we perform a static structural analysis of the initial design of the multi-tasking machines and compare the results of the multi-tasking machines improved by the reinforced design and the results of the initial one. According to the results of the structural analysis, the rigidity of the reinforced machine was increased and the overall weight was decreased. Therefore, the productivity was increased.

A Study on Multi-Fault Diagnosis for Turboshaft Engine of UAV Using Fuzzy and Neural Networks (퍼지 및 신경망을 이용한 무인 항공기용 터보축 엔진의 다중손상진단에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Koo, Young-Ju;Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.556-561
    • /
    • 2009
  • The UAV(Unmanned Aerial Vehicle) that is remotely operating in various and long flight environments must have a very reliable propulsion system. Precise fault diagnosis of the turbo shaft engine for the Smart UAV that has the vertical take-off, landing and forward flight behaviors can promote reliability and availability. This work proposes a new diagnostic method that can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. The proposed diagnostic method can detect not only single fault but also multiple faults.

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석)

  • Kim, Bohyeong;Jung, W.;Baek, H.;Kang, D.;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Multiple Defect Diagnostics of Gas Turbine Engine using Real Coded GA and Artificial Neural Network (실수코드 유전알고리즘과 인공신경망을 이용한 가스터빈 엔진의 복합 결함 진단 연구)

  • Seo, Dong-Hyuck;Jang, Jun-Young;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.23-27
    • /
    • 2008
  • In this study, Real Coded Genetic Algorithm(RCGA) and Artificial Neural Network(ANN) are used for developing the defect diagnostics of the aircraft turbo-shaft engine. ANN accompanied with large amount data has a most serious problem to fall in the local minima. Because of this weak point, it becomes very difficult to obtain good convergence ratio and high accuracy. To solve this problem, GA based ANN has been suggested. GA is able to search the global minima better than ANN. GA based ANN has shown the RMS defect error of 5% less in single and dual defect cases.

  • PDF

Conceptual Design of a Turbopump Adopting a Planetary Gear System (유성기어를 적용한 터보펌프의 개념설계)

  • Kim, Jin-Han;Jeong, Eun-Hwan;Choi, Chang-Ho;Jeon, Seong-Min;Kim, Jin-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • The present paper describes a conceptual design of a turbopump which employs a planetary gear system. In a launcher system, weight is one of the most important design factor. In turbopump systems using propellants such as kerosene, or methane, single shaft systems are employed because of simplicity. One of the main disadvantages of this system, however, is the same rotational speed of both pumps and a turbine which forces to operate under non-optimum condition. To operate each component in optimum or favorable rotational speeds, a planetary gear system seems to be the best choice when the compactness and efficiency of a turbopump system is considered. A conceptual design and feasibility of the turbopump system adopting a planetary gear system is suggested.

Development of a Velocity Compounded Impulse Turbine for the 75ton Liquid Rocket Engine Application (75톤급 액체로켓엔진 터보펌프용 속도복식 터빈개발)

  • Jeong, Eun-Hwan;Lee, Hang-Gi;Park, Pyun-Goo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.40-46
    • /
    • 2011
  • A velocity-compounded(VC) turbine of the 75ton turbopump was developed as an improved performance backup for a single-rotor base-line turbine. Curvic coupling was used for the connection between rotors and shaft. High temperature torsion test and spin test was performed for the curvic coupling design validation. Aerodynamic performance test revealed that the developed VC turbine can generate 20.5% higher specific power than the base-line turbine. It has been measured that $1^{st}$ rotor of the subject turbine generates 74.1% of total power at design operating condition.

The effect of the changing of the edged shape of rotary blade by wearing on tilling torque requirement (로우터리 날의 마모(磨耗)에 의(依)한 단면형상변화(斷面形狀變化)가 경운소요(耕耘所要)토오크에 미치는 영향(影響))

  • Kim, Soung Rai;Kwon, Soon Goo
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.264-269
    • /
    • 1984
  • The single edged blade was efficient to reduce tilling torque requirement than the double edged blade as previous reported study. This study was carried out to find reducing effects of tilling torque requirement of single edged blade comparing to double edged one in according to wearing by tilling operation. The single and double edged rotary blades were attached on same rotary shaft, and tilling operation was done in hard glass land. The wearing weights of the blade were checked out each 3 hrs tilling operation, at same time, the tilling toruqe requirements were measured with soil bin system in laboratory. The results of the study were summarized as follows: 1. The edged blade shape was not changed during the tilling operation of the rotary blade. The single edged blade was saved 5-10% in the maximum tilling torque and 3-15% in the mean tilling torque than the double edged blade for total durable period. 2. Generally, the tilling torques according to operation were decreased until original shape was maintained, but it was increased after 12 hrs tilling operation, and the tip shape of rotary blade was changed seriously. It is noted that the tip shape of the rotary blade is another factor affecting tilling torque, it should be desirable to study on the rotary blade tip shape to reduce tilling torque requirement after changing its original shape with wearing.

  • PDF

Analyses of Widely Used Design Codes for Pile Foundation Using the t-z Method (t-z 방법을 이용한 말뚝기초 설계기준별 비교분석)

  • Park, Sungwon;Misra, Anil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.33-42
    • /
    • 2012
  • The efficiency of the current design methods for computing pile resistances is analyzed using field load-settlement tests results. Twelve load-settlement test data for drilled shafts and bored piles were obtained from the literature. These load-test data were fitted using the t-z method. Subsequently, the ultimate resistances were evaluated based upon the failure criteria from following methods: (1) the Davisson's approach and (2) settlement corresponding to 5% or 10% shaft diameter approach. The ultimate resistances for these drilled shafts and bored piles were also predicted using methods based on the design code from North America (United States, Canada), Europe, and Asia (Japan). The pile resistances determined from field load-settlement tests were compared with those calculated using the design codes. The comparisons show that most design codes predict a conservative resistance for drilled shafts and bored piles. However, in the case of drilled shafts, we find that some of the design codes can over-predict the resistance and, therefore, should be applied cautiously. This research also shows that the t-z method can be successfully used to predict the ultimate resistance and the load transfer mechanism for a single pile.