• Title/Summary/Keyword: Single screw

Search Result 259, Processing Time 0.028 seconds

Performance Evaluation and Analysis of the Screw and Die of the Single Screw Extruder Using the CFD (CFD를 이용한 단축압출기 스크류 및 다이스의 성능시험평가 및 해석에 관한 연구)

  • Kim, Jae-Yoel;Chung, Hyo-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.194-200
    • /
    • 2009
  • The extruder type is classified as screw type and non-screw type in terms of the extrusion method. The screw type extruder, which is the most frequently used, is classified as the single screw extruder and the multi-screw extruder. They are classified as vertical type and horizontal type in terms of structure; and those for compounding and for forming in terms of function. The single screw extruder is a universal extruder, most of which is suitable for the extrusion forming of thermoplastic resin. The multi-screw(two-screw, three-screw and four-screw) extruder can increase the extrusion power using the engagement of the screw flank. The single screw extruder does not have a good mixing ratio of the raw material and stable extrusion power, while it has low construction cost and operation cost. In this study, the single screw extruder, which has many weak points compared with the multi-screw extruder, was studied. There have been many studies on the single screw extruder, and they led to its significant development. The existing study method, however, had complex analysis processes and required much time. In this study, the CFD was applied to the performance test and analysis of the extruder, and the optimal design condition of the extrusion power for the screw and die of the single screw extruder was found by comparing the analysis results with the actual performance measurement of the single screw extruder.

Design and Machining of a Screw Rotor of a Single-Screw Compressor (싱글 스크류 압축기의 스크류 로터의 설계 및 가공)

  • Kim, Doo-Hyeong;Kyung, Jin-Ho;Kim, Yoang-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.452-457
    • /
    • 2016
  • Single screw compressors are widely used in the fields of air/gas compression, refrigeration, and chemical fluid transportation systems. A single-screw compressor is composed of a screw rotor and two gate rotors located at both sides. This simple construction enables low rotational speed of the rotor, efficient compression with low noise, low vibration, and long bearing life. Despite these merits, the design method of single-screw compressors is not well known. To accelerate the industrial application of single-screw compressors, a design method using coordinate transformation is presented in this paper, and a tool trajectory is established for machining. Finally, the screw rotor, which is machined using the proposed method, is presented.

Numerical analysis of internal flow and mixing performance in polymer extruder I: single screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.143-151
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in a single screw extruder system and investigated the mixing performance with respect to the screw speed and the screw pitch. The viscosity of polymer melt was described with Carreau-Yasuda model. The mixing performance was computed numerically by tracking the motions of particles in the screw element system. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the strain. The results revealed that the high screw speed reduces the residence time but increases the deformation rate while the small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance and the small screw pitch increases the distributive mixing performance.

A Study on Pullout Characteristics of Pedicle Screw Design Considering Anatomical Structure of the Lumbar Spine (척추의 해부학적 요소를 고려한 척추경 나사못 디자인의 Pullout 특성 연구)

  • Yoo, Kyeong-Joo;Park, Kwang-Min;Ahn, Kyoung-Gee;Ahn, Yoon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Recently, various types of pedicle screws have been developed considering the anatomical structure of the spine. The purpose of this study was to evaluate the pullout stiffness and strength of two types of commercial pedicle screws. The design of two type screws were single pitched thread (ST) pedicle screw and dual pitched thread (DT) pedicle screw, respectively. The tests were conducted in accordance with the ASTM standards using polyurethane (PU) test blocks which has anatomical structure of the spine. There was no significant difference in pullout stiffness between two types of screw. However, DT exhibited higher pullout strength than ST (p<0.05). Pedicle screw with dual pitched thread showed higher pullout strength without decrease in pullout stiffness compared to the standard pedicle screw. In conclusion, dual pitched thread design of the pedicle screw is considered to be more suitable than the single pitched thread for the anatomical structure of the spine.

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.

Mechanical Performance Comparison of Pedicle Screw Based on Design Parameters: Dual Lead and Dual Pitch (척추경 나사못의 디자인이 고정력 및 구동 토크에 미치는 영향 분석: 이중 나사 및 이중 피치 나사)

  • Choi, Sun-Gak;Cha, Eun-Jong;Kim, Kyung-Ah;Ahn, Yoon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.134-139
    • /
    • 2018
  • One of the most common problems with pedicle screw system is pullout of the screw. This study was performed to evaluate the pullout strength and driving torque of newly designed pedicle screws. The design of three type screws were standard pedicle screw, which had single lead threaded and single pitched design (Type A), single pitched and dual lead threaded pedicle screw (Type B), dual pitched and dual lead threaded pedicle screw (Type C), respectively. The tests were performed in accordance with the ASTM standards using polyurethane (PU) foam blocks. There was no significant difference in pullout strength among three types of screw. Type B and Type C exhibited higher insertion torque and removal torque than Type A, respectively (p<0.05). Pedicle screws newly developed with dual pitched and dual lead threaded design showed higher driving torque without decrease in pullout strength compared to the standard pedicle screw and could be inserted more rapidly with the same number of revolutions.

Three-Dimensional Heat and Fluid Flow Simulations for Non-Newtonian Fluid in a Single Screw Extruder (단축 스크류 압출기 내의 비뉴턴유체에 대한 3차원 열 및 유동해석)

  • Kwag, Dong-Seong;Kim, Woo-Seung;Lyu, Min-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.337-342
    • /
    • 2001
  • A numerical study of three-dimensional fluid flow and heat transfer in the metering section of a single screw extruder has been performed. The mathematical model for the screw channel is simplified by unwound channel and fixing the coordinate system to the screw. The pressure boundary and the prescribed mass flow rate conditions are imposed on the inlet and outlet, respectively. The commercial code STAR-CD based on the finite volume method is used to obtain the results of the present work. The computation of the reverse flow, which cannot be computed by the marching-type 3-D model, is performed in the present study.

  • PDF

Single Screw Transphyseal Bridging for Correction of Unilateral Carpal Valgus in a 5-Week Old Thoroughbred Foal

  • Ryu, Seung-Ho;Park, Chull-Gyu;Kim, Ho-Seong;Kim, Yeong-Hun;Kim, Byung-Sun;Jeong, Soon-Wuk
    • Journal of Veterinary Clinics
    • /
    • v.39 no.1
    • /
    • pp.28-31
    • /
    • 2022
  • A 5-week old Thoroughbred foal was presented with severe left carpal valgus. Radiographs of the dorsopalmar projections confirmed the deviation was 14 degrees. Surgery using a single-position screw traversing the physis of the distal radius was performed. The limb was almost straight (2 degrees) 3 weeks after surgery. Visual/radiograph follow-up 7 months after screw removal revealed no over-correction after removal of the screw. Transphyseal bridging using a single-position screw without lateral periosteal transection of distal radius was successful for the correction of foals with this condition.

Construction of Single-screw Food Extruder and its Mechanical Properties and Product Characteristics for Corn Grits Extrusion-cooking (Single-screw Food Extruder의 제작과 Corn Grits 팽화시의 기계적 성질과 제품 특성)

  • Lee, C.H.;Lim, J.K.;Kim, J.D.;Lee, M.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.392-398
    • /
    • 1983
  • A pilot single-screw food extruder was constructed, and its mechanical properties and product characteristics were investigated by using corn grits. The screw rotational speed was varied and the changes in temperature profile of the barrel for the start-up period of operation were measured. The rate of heat generation for the start-up period was affected by the screw speed and feed rate. The screw speed resulted in a great influence on the estimated dough viscosity. The changes in the dough viscosity could indicate the on-set of termoplastic reaction in the barrel. The expansion ratio during the start-up period mainly depended on the barrel temperature and the degree of thermoplastic reaction in the barrel. The barrel temperatures for the gelatinization and burning of corn grits depended on the screw speed as well as the feed rate.

  • PDF