• Title/Summary/Keyword: Single phase inverters

Search Result 146, Processing Time 0.031 seconds

A Resonant Characteristics Analysis and Suppression Strategy for Multiple Parallel Grid-connected Inverters with LCL Filter

  • Sun, Jian-jun;Hu, Wei;Zhou, Hui;Jiang, Yi-ming;Zha, Xiao-ming
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1483-1493
    • /
    • 2016
  • Multiple parallel inverters have multiple resonant frequencies that are influenced by many factors. This often results in stability and power quality problems. This paper develops a multiple input multiple output model of grid-connected inverter systems using a closed-loop transfer function. The influence factors of the resonant characteristics are analyzed with the developed model. The analysis results show that the resonant frequency is closely related to the number, type and composition ratio of the parallel inverters. To suppress resonance, a scheme based on virtual impedance is presented, where the virtual impedance is emulated in the vicinity of the resonance frequency. The proposed scheme needs one inverter with virtual impedance control, which reduces the design complexity of the other inverter controllers. Simulation and experimental tests are carried out on two single phase converter-based setups. The results validate the correctness of the model, the analytical results and the resonant suppressing scheme.

PQ Control of Micro Grid Inverters with Axial Voltage Regulators

  • Chen, Yang;Zhao, Jinbin;Qu, Keqing;Li, Fen
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1601-1608
    • /
    • 2015
  • This paper presents a PQ control strategy for micro grid inverters with axial voltage regulators. The inverter works in the voltage-controlled mode and can help improve the terminal power quality. The inverter has two axial voltage regulators. The 1st regulator involves the output voltage amplitude and output impedance, while the 2nd regulator controls the output frequency. The inverter system is equivalent to a controllable voltage source with a controllable inner output impedance. The basic PQ control for micro grid inverters is easy to accomplish. The output active and reactive powers can be decoupled well by controlling the two axial voltages. The 1st axial voltage regulator controls the reactive power, while the 2nd regulator controls the active power. The paper analyses the axial voltage regulation mechanism, and evaluates the PQ decoupling effect mathematically. The effectiveness of the proposed control strategy is validated by simulation and experimental results.

Analysis Method Using Equivalent Circuit Considering Harmonic Components of the Pole Change Motor

  • Nam Hyuk;Jung Tae-Uk;Kim Young-Kyoun;Jung Seung-Kyu;Hong Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.162-167
    • /
    • 2005
  • This paper deals with the method of characteristic analysis of the capacitor-run single- phase induction motor having two poles (4-pole and 2-pole). This motor, which is referred to as a pole change motor in this paper, is capable of variable speed operation without inverters or drives. However, speed-torque curve can be distorted by the harmonic components contained in the magnetic flux density distribution. Therefore, the characteristics of this motor are analyzed using equivalent circuit considering harmonic components and the simulation results are compared with the experimental results.

A Hybrid Active Power Filter for Electric-Railway Systems using Multi-Level Inverters (멀티레벨 인버터를 이용한 전기철도용 하이브리드 능동전력필터)

  • Kim Yoon-Ho;Kim Soo-Hong;Rho Sung-Chan;Lee Kang-Hee
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1334-1339
    • /
    • 2004
  • This paper proposes transformerless power conversion system consisting of a single-phase diode rectifier and a shunt hybrid filter for the electric-railway system. The hybrid filter consists of a single tuned LC filter per a phase and a low-rated NPC type multi-level inverter. Compared with conventional active filters. Transformers are not used. Also, LC filter works as not only a harmonic filter tuned at the 5th harmonic frequency but also a switching-ripple filter. The rating of the active filter can be decreased by using a NPC type multi-level inverter. The simulation results confirm the validity of the system.

  • PDF

A Hybrid Active Power Filter for Electric-Railway Systems using Multi-Level Inverters (멀티레벨 인버터를 이용한 전기철도용 하이브리드 능동전력필터)

  • Kim Yoon-Ho;Kim Soo-Hong;Rho Sung-Chan;Lee Kang-Hee
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1427-1432
    • /
    • 2004
  • This paper proposes transformerless power conversion system consisting of a single-phase diode rectifier and a shunt hybrid filter for the electric-railway system. The hybrid filter consists of a single tuned LC filter per a phase and a low-rated NPC type multi-level inverter. Compared with conventional active filters. Transformers are not used. Also, LC filter works as not only a harmonic filter tuned at the 5th harmonic frequency but also a switching-ripple filter. The rating of the active filter can be decreased by using a NPC type multi-level inverter. The simulation results confirm the validity of the system

  • PDF

Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

  • Zhang, Shuaitao;Zhao, Jinbin;Chen, Yang;He, Chaojie
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1278-1287
    • /
    • 2017
  • Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

A High-Efficiency Bidirectional AC/DC Topology for V2G Applications

  • Su, Mei;Li, Hua;Sun, Yao;Xiong, Wenjing
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.899-907
    • /
    • 2014
  • This paper proposes a single-phase bidirectional AC/DC converter topology applied in V2G systems, which consists of an inverter and a bidirectional non-inverting buck-boost converter. This topology can operate in four modes: buck charging, boost charging, buck discharging and boost discharging with high input current quality and unity input power factor. The inverter switches at line frequency, which is different from conventional voltage source inverters. A bidirectional buck-boost converter is utilized to adapt to a wider charging voltage range. The modulation and control strategy is introduced in detail, and the switching patterns are optimized to reduce the current ripple. In addition, the semiconductor losses are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

A Hybrid Active Power Filter for Electric-Railway Systems Using Multi-Level Inverters (멀티레벨 인버터를 이용한 전기철도용 하이브리드 능동 전력필터)

  • 김윤호;김수홍;이강희
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.339-344
    • /
    • 2004
  • This paper proposes transformerless power conversion system consisting of a single-phase diode rectifier and a shunt hybrid filter for the electric-railway system. The hybrid filter consists of a single tuned LC filter per a phase and a low-rated NPC type multi-level inverter. Compared with conventional active filters. transformers are not used. Also, LC filter works as not only a harmonic filter tuned at the 3rd harmonic frequency but also a switching-ripple filter. The rating of the active filter can be decreased by using a NPC type multi-level inverter. The simulation results confirm the validity of the system.

Design of an FPGA Based Controller for Delta Modulated Single-Phase Matrix Converters

  • Agarwal, Anshul;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.974-981
    • /
    • 2012
  • A FPGA based delta modulated single phase matrix converter has been developed that may be used in both cyclo-converters and cyclo-inverters. This converter is ideal for variable speed electrical drives, induction heating, fluorescent lighting, ballasts and high frequency power supplies. The peripheral input-output and FPGA interfacing have been developed through Xilinx 9.2i, to generate delta modulated trigger pulses for the converter. The controller has been relieved of the time consuming computational task of PWM signal generation by implementing the method of trigger pulse generation in a FPGA by using Hardware Description Language VHDL in Xilinx. The trigger circuit has been tested qualitatively by observing various waveforms on an oscilloscope. The operation of the proposed system has been found to be satisfactory.

Power Decoupling of Single-phase DC/AC inverter using Dual Half Bridge Converter (듀얼 하프브리지 컨버터를 사용하는 파워 디커플링 DC/AC 인버터)

  • Irfan, Mohammad Sameer;Ahmed, Ashraf;Park, Joung-hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.421-422
    • /
    • 2015
  • Nowadays, bidirectional DC-DC converters are becoming more into picture for different applications especially electric vehicles. There are many bidirectional DC-DC converters topologies; however, voltage-fed Dual Half-Bridge (DHB) topology has less number of switches as compared to other isolated bidirectional DC-DC converters. Furthermore, voltage fed DHB has galvanic isolation, high power density, reduced size, high efficiency and hence cost effective. Electrolytic capacitors always have problem regarding size and reliability in DC-AC single phase inverters. Therefore, voltage-fed DHB converter is proposed for the purpose of power decoupling to replace electrolytic capacitor by film capacitors. A new control strategy has been developed for 120Hz ripple rejection, and it was verified by simulation.

  • PDF