• Title/Summary/Keyword: Single phase inverters

Search Result 146, Processing Time 0.025 seconds

Single phase induction motor driving system using auxiliary resonant DC-DC converter (보조 공진 DC-DC컨버터를 이용한 단상 유도 전동기 구동 시스템)

  • Lee, S.H.;Mun, S.P.;Kwon, S.K.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1190-1192
    • /
    • 2002
  • These days, electromagnetic radiation noise and switching losses of static converter become harmful. Many resonant inverters with radiation techniques solve their such problems. Auxiliary Resonant Commutated Pole Inverter (ARCP) was proposed. but it has two demerits. In circuit configuration. It isn't constructed by 2 in 1 IGET modules. Besides, control is complicated because of neutral point voltage control and boost current control. This paper proposes a new auxiliary resonant inverter which solved two demerits. In addition, it deals efficiency which compared with hard switching inverter and result of separation of power loss

  • PDF

An Optimal Current Distribution Method of Dual-Rotor BLDC Machines

  • Kim, Sung-Jung;Park, Je-Wook;Im, Won-Sang;Jung, Hyun-Woo;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.250-255
    • /
    • 2013
  • This paper proposes an optimal current distribution method of dual-rotor brushless DC machines (DR-BLDCMs) which have inner and outer surface-mounted permanent-magnet rotors. The DR-BLDCM has high power density and high torque density compare to the conventional single rotor BLDCM. To drive the DR-BLDCM, dual 3-phase PWM inverters are required to excite the currents of a dual stator of the DR-BLDCM and an optimal current distribution algorithm is also needed to enhance the system efficiency. In this paper, the copper loss and the switching loss of a DR-BLDCM drive system are analyzed according to the motor parameters and the switching frequency. Moreover, the optimal current distribution method is proposed to minimize the total electrical loss. The validity of the proposed method was verified through several experiments.

A Parallel Operation System of the Z-Source Active Power Filter with Fuel Cells System (연료전지 Z-소스 능동전력필터의 병렬운전 시스템)

  • Oum, J.H.;Jung, Y.G.;Lim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.372-375
    • /
    • 2006
  • This paper proposes a parallel operation system of the Z-source active power filter using one fuel cells(FC) system. The proposed system is composed of two Z-source inverters operating in parallel only one PEM(Polymer Electrolyte Membrane)FC system. Also, as the control algorithm of the active power filter, a single phase P-Q theory and PI control are adopted. The effectiveness of the proposed the system is verified by the PSIM simulation in the steady state and the transient state.

  • PDF

An Improved Wavelet PWM Technique with Output Voltage Amplitude Control for Single-phase Inverters

  • Zheng, Chun-Fang;Zhang, Bo;Qiu, Dong-Yuan;Zhang, Xiao-Hui;Li, Rui
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1407-1414
    • /
    • 2016
  • Unlike existing pulse-width modulation (PWM) techniques, such as sinusoidal PWM and random PWM, the wavelet PWM (WPWM) technique based on a Harr wavelet function can achieve a high fundamental component for the output voltage, low total harmonic distortion, and simple digital implementation. However, the original WPWM method lacks output voltage control. Thus, the practical application of the WPWM technique is limited. This study proposes an improved WPWM technique that can regulate output voltage amplitude with the addition of a parameter. The relationship between the additional parameter and the output voltage amplitude is analyzed in detail. Experimental results verify that the improved WPWM exhibits output voltage control in addition to all the merits of the WPWM technique.

A Study on Current Ripple Reduction Due to Offset Error and Dead-time Effect of Single-phase Grid-connected Inverters Based on PR Controller (비례공진 제어기를 이용한 단상 계통연계형 인버터의 데드타임 영향과 옵셋 오차로 인한 전류맥동 저감에 관한 연구)

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.157-158
    • /
    • 2014
  • 단상 계통연계형 인버터에서 전류센서를 통한 상전류 측정시 옵셋 오차는 전류센서와 측정 경로상에 위치한 아날로그 소자의 전압 불균형 및 비선형성으로 인하여 발생하게 된다. 또한 데드타임은 전력용 반도체 스위치를 제어하기 위한 PWM 신호 출력시 필연적으로 발생된다. 본 논문에서는 데드타임으로 인하여 왜곡된 상전류에 포함된 옵셋 오차에 의한 영향을 분석하고 동기좌표계 dq축 전류에 포함된 특정 고조파 성분을 제거하기 위하여 PR 제어기를 사용한 알고리즘이 제안되었다. 데드타임 및 옵셋 오차로 인해 발생된 전류맥동 보상을 위한 기준신호로는 동기좌표계 dq축 전류를 사용하였다. 제안된 알고리즘의 타당성을 시뮬레이션과 실험을 통하여 증명하였다.

  • PDF

An On-Line Harmonic Elimination Pulse Width Modulation Scheme for Voltage Source Inverter

  • Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • This paper proposes a new harmonic elimination PWM (HEPWM) scheme for voltage source inverters (VSI) based on the curve fittings of certain polynomials functions. The resulting equations to calculate the switching angle of the HEPWM require only the addition and multiplication processes; therefore any number of harmonics to be eliminated and the fundamental amplitude of the pole switching waveform (NP1) can be controlled on-line. An extensive angle error analysis is carried out to determine the accuracy of the algorithm in comparison to the exact solution. To verify the workability of the technique, an experimental single phase VSI is constructed. The algorithm is implemented on a VSI using a 16-bit microprocessor. The results obtained from the test rig are compared to the theoretical prediction and the results of the MATLAB simulations.

A Study on the Analysis and Prediction of switch currents in PWM inverters (PWM 인버터에서 스위치 전류의 해석과 그 예측에 관한 연구)

  • Ji, Ho-Chul;Jeong, Seung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.448-452
    • /
    • 1997
  • Theoretical average current and rms current equations are solved using the analytical method in the 3phase voltage-fed inverter. Experimental switch current equations are established by simulation and compared with theoretical equations. As a result of analysis, average and rms currents of switch devices are represented by a function as power factor and modulation index. Especially, equations of this paper are represented as a function of a single factor(K) equal to the product of the power factor and modulation index. Method that can find current levels of switch devices for inverter design and conduction loss of inverter in a simple and accurate manner is presented. Influences of modulation method on switch current are also studied.

  • PDF

Implementation of a ZVT-PRT Algorithm for Current Controlled Inverters using a Digital Signal Processor (DSP를 이용한 전류제어형 인버터의 ZVT-PRT 알고리즘의 구현)

  • Lee S. R.;Jeon C. H.;Kim S. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.326-329
    • /
    • 2002
  • In this paper, a single-phase inverter using a diode bridge-type resonant circuit to implement ZVT(Zero Voltage Transition) switching is presented. The current control algorithm is analyzed about how to design the circuit with auxiliary switch which can ZVT operation for the main power switch. The simulation and experimental results would be shown to verify the proposed current algorithm, because the main power switch is turn on with ZVT and the hi-directional inverter is operated.

  • PDF

Experimental and Numerical Analysis of a Simple Core Loss Calculation for AC Filter Inductor in PWM DC-AC Inverters

  • Lee, Kyoung-Jun;Cha, Honnyong;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • This paper introduces a simple core loss calculation method for output filter inductor in pulse width modulation (PWM) DC-AC inverter. Amorphous C-core (AMCC-320) is used to analyze the core loss. In order to measure core loss of the output filter inductor and validate the proposed method, a single-phase half-bridge inverter and a calorimeter are used. By changing switching frequency and modulation index (MI) of the inverter, core loss of the AMCC-320 is measured with the lab-made calorimeter and the results are compared with calculated core loss. The proposed method can be easily extended to other core loss calculation of various converters.

Parallel Operation of Three-Phase Inverters for Single Person Electrical Vehicle (1인승 전기차량을 위한 병렬형 3상 인버터)

  • Han, Keun-Woo;Kim, Seong-Gon;Kim, Young-Chan;Kim, Eun-Joo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.522-523
    • /
    • 2013
  • 본 논문에서는 1인승 전기차량 구동을 위한 병렬형 3상 인버터를 제안 하였다. 제안된 인버터는 전기차량의 부하 상태에 따라 하나 또는 두개의 인버터를 병렬로 사용하여 부하가 분담된 패턴으로 제어한다. 인버터의 전체적인 제어 방식으로는 유도 전동기를 위한 벡터제어와 공간벡터 변조방식을 적용 하였다. 본 연구의 타당성은 PSIM 시뮬레이션을 통하여 검증을 하고자 한다.

  • PDF