• Title/Summary/Keyword: Single parent

Search Result 362, Processing Time 0.019 seconds

Studies on the Inheritance of Agronomic Characteristics in Upland Cotton Varieties (Gossypium hirsutum L.) in Korea (육지면품종의 유용형질의 유전에 관한 연구)

  • Bang-Myung Kae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.21 no.2
    • /
    • pp.281-313
    • /
    • 1976
  • To obtain fundamental informations on cotton breeding efficiences for Korea, individual genetic relationships and interrelationships between the agronomic characteristics of Upland cotton were investigated. These experiments were couducted at the Mokpo Branch Station $(34^{\circ}48'N, $ $126^{\circ}23'E$ and altitude of 10m above sea level) from 1969 through 1972. Heterosis, combining ability, dominance and recessive gene action, genetic variance, and phenotypic and genotypic correlation were investigated by $F_1'S$ from an 11-parent partial diallel cross and the segregating $F_2$ and $F_3$ populations of the cross Paymaster times Heujueusseo Trice. The following points resulted from this study, 1. Heteroses for number of bolls per plant and lint yield were significant at 27, 84% and 37.26%, respectively. No other character had significant heteroses. 2. The GCA estimates for all studied characteristics were higher than the SCA estimates. Varieties with high GCA effects were Suwon 1 for earliness, Paymaster and Arijona for high lint percent, and Arijona for long fiber, etc, 3. SCA estimates for lint yield varied widely in crosses with Mokpo 4, Mokpo 6 and Heujueusseo Trice. Those crosses with the highest SCA effects were combinations with large characteristics differences, Example of these crosses are Mokpo 4 times Acala 1517W, Mokpo 4 times D. P. L. and Heujueusseo Trice aud Paymaster. 4. Early-maturing varieties were completely dominant to late-maturing varieties in some combinations while other crosses gave intermediate phenotypes. These results suggest additive genetic action by multi-genes. Heujueusseo Trice, Mokpo 6, and Suwon 1 showed highest degree of dominance for earliness. 5. There were no significant trends for inheritance of weight of boll and 100 seeds weight. 6. Long staple was partially to completely dominant to short staple. Though there were single gene ratios the rate of dominance decreased in the $F_2$ and $F_3$ populations in the cross between the long staple variety Paymaster and the short staple variety Heujueusseo Trice. Diallel cross $F_1$ hybrids showed complicated allelic gene action for staple length. Various dominance degree were shown by varieties. 7. Number of bolls per plant indicated strong over-dominance and small non-allelic additive gene action. 8. Lint Yield was characterized by over-dominance and by multiple non-allelic-gene action. High-yielding varieties were dominant to low-yielding ones. However, the low-yielding variety Heujueusseo Trice showed over-dominance, indicating different reactions according to the varieties and combinations. 9. Broad sense heritability for days to flowering was 34-39% while narrow sense heritability was 11%. Large variations of individual plants caused by Korean climatic conditions cause this situation. Heritability estimates for weight of boll was 30% for broad sense and 22% for narrow sense. 10. Heritability estimates for staple length and lint percent were very high suggesting strong selection effects. 11. Narrow sense heritability estimates for number of bolls per plant was 30% in the diallel cross $F_1$ hybrids and 36% in the $F_2$ population of the special cross. Broad sense heritability was estimated at 67% suggesting that. 12. Heritability estimates for lint yield was low due to high over-dominance in the diallel cross $F_1$ hybrids. Heritability estimates for yield was low in the $F_1$ hybrids but high in the $F_2$ and $F_3$ populations. 13. Phenotypic and genotypic correlations between lint percent and days to flowering and between staple length and days to flowering were high in the $F_1, $ $F_2$ and $F_3$ populations. Late-maturing varieties and individuals had long staple and high lint percent in general. As the correlation between days to flowering and lint yield was extremely low, the two traits were considered independent of each other. Days to flowering and number of bolls per plant were negatively correlated in the $F_3$ population, indicating early-maturing individual plants with many bolls may be readily selected. 14. Phenotypic and genotypic correlations between lint percent and staple length were high in $F_1, $ $F_2$ and $F_3$ populations. Accordingly, long staple varieties were high in lint percent. It was recognized that lint yield and lint percent were positively correlated in the diallel cross $F_1$ hybrids, and lint percent and staple length were positively correlated in the $F_2$ population, indicating that lint percent and staple length affect lint yield. 15. Lint yield was significantly and positively phenotypically correlated with number of bolls per plant in $F_1, $ $F_2$ and $F_3$ populations. A high genotypic correlation was also noted indicating a close genetic relationship. The selection efficiencies for a high-yielding variety can be increased when individual plants with many bolls are selected in later generations. The selection efficiencies for good fiber quality can be enhanced when individuals with long staple and high lint percent are selected in early generations.

  • PDF

A Study on Estimation of Edible Meat Weight in Live Broiler Chickens (육용계(肉用鷄)에서 가식육량(可食肉量)의 추정(推定)에 관(關)한 연구(硏究))

  • Han, Sung Wook;Kim, Jae Hong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.221-234
    • /
    • 1983
  • A study was conducted to devise a method to estimate the edible meat weight in live broilers. White Cornish broiler chicks CC, Single Comb White Leghorn egg strain chicks LL, and two reciprocal cross breeds of these two parent stocks (CL and LC) were employed A total of 240 birds, 60 birds from each breed, were reared and sacrificed at 0, 2, 4, 6, 8 and 10 weeks of ages in order to measure various body parameters. Results obtained from this study were summarized as follows. 1) The average body weight of CC and LL were 1,820g and 668g, respectively, at 8 weeks of age. The feed to gain ratios for CC and LL were 2.24 and 3.28, respectively. 2) The weight percentages of edible meat to body weight were 34.7, 36.8 and 37.5% at 6, 8 and 10 weeks of ages, respectively, for CC. The values for LL were 30.7, 30.5 and 32.3%, respectively, The CL and LC were intermediate in this respect. No significant differences were found among four breeds employed. 3) The CC showed significantly smaller weight percentages than did the other breeds in neck, feather, and inedible viscera. In comparison, the LL showed the smaller weight percentages of leg and abdominal fat to body weight than did the others. No significant difference was found among breeds in terms of the weight percentages of blood to body weight. With regard to edible meat, the CC showed significantly heavier breast and drumstick, and the edible viscera was significantly heavier in LL. There was no consistent trend in neck, wing and back weights. 4) The CC showed significantly larger measurements body shape components than did the other breeds at all time. Moreover, significant difference was found in body shape measurements between CL and LC at 10 weeks of age. 5) All of the measurements of body shape components except breast angle were highly correlated with edible meat weight. Therefore, it appeared to be possible to estimate the edible meat wight of live chickens by the use of these values. 6) The optimum regression equations for the estimation of edible meat weight by body shape measurements at 10 weeks of age were as follows. $$Y_{cc}=-1,475.581 +5.054X_{26}+3.080X_{24}+3.772X_{25}+14.321X_{35}+1.922X_{27}(R^2=0.88)$$ $$Y_{LL}=-347.407+4.549X_{33}+3.003X_{31}(R^2=0.89)$$ $$Y_{CL}=-1,616.793+4.430X_{24}+8.566X_{32}(R^2=0.73)$$ $$Y_{LC}=-603.938+2.142X_{24}+3.039X_{27}+3.289X_{33}(R^2=0.96)$$ Where $X_{24}$=chest girth, $X_{25}$=breast width, $X_{26}$=breast length, $X_{27}$=keel length, $X_{31}$=drumstick girth, $X_{32}$=tibotarsus length, $X_{33}$=shank length, and $X_{35}$=shank diameter. 7) The breed and age factors caused considerable variations in assessing the edible meat weight in live chicken. It seems however that the edible meat weight in live chicken can be estimated fairly accurately with optimum regression equations derived from various body shape measurements.

  • PDF