• 제목/요약/키워드: Single nucleotide polymorphisms (SNPs)

검색결과 546건 처리시간 0.021초

Evaluation of the classification method using ancestry SNP markers for ethnic group

  • Lee, Hyo Jung;Hong, Sun Pyo;Lee, Soong Deok;Rhee, Hwan seok;Lee, Ji Hyun;Jeong, Su Jin;Lee, Jae Won
    • Communications for Statistical Applications and Methods
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2019
  • Various probabilistic methods have been proposed for using interpopulation allele frequency differences to infer the ethnic group of a DNA specimen. The selection of the statistical method is critical because the accuracy of the statistical classification results vary. For the ancestry classification, we proposed a new ancestry evaluation method that estimate the combined ethnicity index as well as compared its performance with various classical classification methods using two real data sets. We selected 13 SNPs that are useful for the inference of ethnic origin. These single nucleotide polymorphisms (SNPs) were analyzed by restriction fragment mass polymorphism assay and followed by classification among ethnic groups. We genotyped 400 individuals from four ethnic groups (100 African-American, 100 Caucasian, 100 Korean, and 100 Mexican-American) for 13 SNPs and allele frequencies that differed among the four ethnic groups. Additionally, we applied our new method to HapMap SNP genotypes for 1,011 samples from 4 populations (African, European, East Asian, and Central-South Asian). Our proposed method yielded the highest accuracy among statistical classification methods. Our ethnic group classification system based on the analysis of ancestry informative SNP markers can provide a useful statistical tool to identify ethnic groups.

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • 제35권11호
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome

  • Shin, Donghyun;Oh, Jae-Don;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1150-1159
    • /
    • 2018
  • Objective: Non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in Berkshire selective sweep regions and then were investigated to discover genetic nsSNP mechanisms that were potentially associated with Berkshire domestication and meat quality. We further used bioinformatics tools to predict damaging amino-acid substitutions in Berkshire-related nsSNPs. Methods: nsSNPs were examined in whole genome resequencing data of 110 pigs, including 14 Berkshire pigs, generated using the Illumina Hiseq2000 platform to identify variations that might affect meat quality in Berkshire pigs. Results: Total 65,550 nsSNPs were identified in the mapped regions; among these, 319 were found in Berkshire selective-sweep regions reported in a previous study. Genes encompassing these nsSNPs were involved in lipid metabolism, intramuscular fatty-acid deposition, and muscle development. The effects of amino acid change by nsSNPs on protein functions were predicted using sorting intolerant from tolerant and polymorphism phenotyping V2 to reveal their potential roles in biological processes that may correlate with the unique Berkshire meat-quality traits. Conclusion: Our nsSNP findings confirmed the history of Berkshire pigs and illustrated the effects of domestication on generic-variation patterns. Our novel findings, which are generally consistent with those of previous studies, facilitated a better understanding of Berkshire domestication. In summary, we extensively investigated the relationship between genomic composition and phenotypic traits by scanning for nsSNPs in large-scale whole-genome sequencing data.

Single-nucleotide polymorphisms in prion protein gene of the Korean subspecies of Chinese water deer

  • Jeong, Hyun-Jeong;Lee, Joong-Bok;Park, Seung-Yong;Song, Chang-Seon;Kim, Bo-Sook;Rho, Jung-Rae;Yoo, Mi-Hyun;Jeong, Byung-Hoon;Kim, Yong-Sun;Choi, In-Soo
    • 대한수의학회지
    • /
    • 제49권1호
    • /
    • pp.59-62
    • /
    • 2009
  • Susceptibility to chronic wasting disease (CWD) in cervid species has been associated with polymorphisms in the prion protein gene (PRNP). The single nucleotide polymorphisms (SNPs) were found in the PRNP of the Korean subspecies of Chinese water deer via analyses of the DNA sequences obtained from 34 individual deer. Two SNPs were detected at codons 77 and 100. One SNP at codon 77 encoding Glycine was determined to be a silent mutation but the other SNP detected at codon 100 induced an amino acid change, from Asparagine to Serine. The prion protein (PrP) amino acid sequence of the water deer showed 98.8-99.2% homology with those of American elk, white-tailed deer and mule deer. The PrP of the water deer contained amino acid residues closely related with CWD-susceptibility. This study is the first to describe genetic variations in the PRNP of the Korean subspecies of Chinese water deer.

Relevance Epistasis Network of Gastritis for Intra-chromosomes in the Korea Associated Resource (KARE) Cohort Study

  • Jeong, Hyun-hwan;Sohn, Kyung-Ah
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.216-224
    • /
    • 2014
  • Gastritis is a common but a serious disease with a potential risk of developing carcinoma. Helicobacter pylori infection is reported as the most common cause of gastritis, but other genetic and genomic factors exist, especially single-nucleotide polymorphisms (SNPs). Association studies between SNPs and gastritis disease are important, but results on epistatic interactions from multiple SNPs are rarely found in previous genome-wide association (GWA) studies. In this study, we performed computational GWA case-control studies for gastritis in Korea Associated Resource (KARE) data. By transforming the resulting SNP epistasis network into a gene-gene epistasis network, we also identified potential gene-gene interaction factors that affect the susceptibility to gastritis.

MDM2 T309G has a Synergistic Effect with P21 ser31arg Single Nucleotide Polymorphisms on the Risk of Acute Myeloid Leukemia

  • Ebid, Gamal T.;Sedhom, Iman A.;El-Gammal, Mosaad M.;Moneer, Manar M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4315-4320
    • /
    • 2012
  • Background: The P53 tumor suppressor gene plays a pivotal role in maintaining cellular homeostasis by preventing the propagation of genome mutations. P53 in its transcriptionally active form is capable of activating distinct target genes that contribute to either apoptosis or growth arrest, like P21. However, the MDM2 gene is a major negative regulator of P53. Single nucleotide polymorphisms (SNP) in codon Arg72Pro of P53 results in impairment of the tumor suppressor activity of the gene. A similar effect is caused by a SNP in codon 31 of P21. In contrast, a SNP in position 309 of MDM2 results in increased expression due to substitution of thymine by guanine. All three polymorphisms have been associated with increased risk of tumorigenesis. Aim of the study: We aimed to study the prevalence of SNPs in the P53 pathway involving the three genes, P53, P21 and MDM2, among acute myeloid leukemia (AML) patients and to compare it to apparently normal healthy controls for assessment of impact on risk. Results: We found that the P21 ser31arg heterozygous polymorphism increases the risk of AML (P value=0.017, OR=2.946, 95% CI=1.216-7.134). Although the MDM2 309G allele was itself without affect, it showed a synergistic effect with P21 ser/arg polymorphism (P value=0.003, OR=6.807, 95% CI=1.909-24.629). However, the MDM2 309T allele abolish risk effect of the P21 polymorphic allele (P value=0.71). There is no significant association of P53 arg72pro polymorphism on the risk of AML. Conclusion: We suggest that SNPs in the P53 pathway, especially the P21 ser31arg polymorphism and combined polymorphisms especially the P21/MDM2 might be genetic susceptibility factors in the pathogenesis of AML.

Genome analysis of Yucatan miniature pigs to assess their potential as biomedical model animals

  • Kwon, Dae-Jin;Lee, Yeong-Sup;Shin, Donghyun;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권2호
    • /
    • pp.290-296
    • /
    • 2019
  • Objective: Pigs share many physiological, anatomical and genomic similarities with humans, which make them suitable models for biomedical researches. Understanding the genetic status of Yucatan miniature pigs (YMPs) and their association with human diseases will help to assess their potential as biomedical model animals. This study was performed to identify non-synonymous single nucleotide polymorphisms (nsSNPs) in selective sweep regions of the genome of YMPs and present the genetic nsSNP distributions that are potentially associated with disease occurrence in humans. Methods: nsSNPs in whole genome resequencing data from 12 YMPs were identified and annotated to predict their possible effects on protein function. Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 analyses were used, and gene ontology (GO) network and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed. Results: The results showed that 8,462 genes, encompassing 72,067 nsSNPs were identified, and 118 nsSNPs in 46 genes were predicted as deleterious. GO network analysis classified 13 genes into 5 GO terms (p<0.05) that were associated with kidney development and metabolic processes. Seven genes encompassing nsSNPs were classified into the term associated with Alzheimer's disease by referencing the genetic association database. The KEGG pathway analysis identified only one significantly enriched pathway (p<0.05), hsa04080: Neuroactive ligand-receptor interaction, among the transcripts. Conclusion: The number of deleterious nsSNPs in YMPs was identified and then these variants-containing genes in YMPs data were adopted as the putative human diseases-related genes. The results revealed that many genes encompassing nsSNPs in YMPs were related to the various human genes which are potentially associated with kidney development and metabolic processes as well as human disease occurrence.

Genome-wide association study for intramuscular fat content in Chinese Lulai black pigs

  • Wang, Yanping;Ning, Chao;Wang, Cheng;Guo, Jianfeng;Wang, Jiying;Wu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.607-613
    • /
    • 2019
  • Objective: Intramuscular fat (IMF) content plays an important role in meat quality. Identification of single nucleotide polymorphisms (SNPs) and genes related to pig IMF, especially using pig populations with high IMF content variation, can help to establish novel molecular breeding tools for optimizing IMF in pork and unveil the mechanisms that underlie fat metabolism. Methods: We collected muscle samples of 453 Chinese Lulai black pigs, measured IMF content by Soxhlet petroleum-ether extraction method, and genotyped genome-wide SNPs using GeneSeek Genomic Profiler Porcine HD BeadChip. Then a genome-wide association study was performed using a linear mixed model implemented in the GEMMA software. Results: A total of 43 SNPs were identified to be significantly associated with IMF content by the cutoff p<0.001. Among these significant SNPs, the greatest number of SNPs (n = 19) were detected on Chr.9, and two linkage disequilibrium blocks were formed among them. Additionally, 17 significant SNPs are mapped to previously reported quantitative trait loci (QTLs) of IMF and confirmed previous QTLs studies. Forty-two annotated genes centering these significant SNPs were obtained from Ensembl database. Overrepresentation test of pathways and gene ontology (GO) terms revealed some enriched reactome pathways and GO terms, which mainly involved regulation of basic material transport, energy metabolic process and signaling pathway. Conclusion: These findings improve our understanding of the genetic architecture of IMF content in pork and facilitate the follow-up study of fine-mapping genes that influence fat deposition in muscle.

A missense mutation in the coding region of the toll-like receptor 4 gene affects milk traits in Barki sheep

  • Sallam, Ahmed M.
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.489-498
    • /
    • 2021
  • Objective: Milk production is one of the most desirable traits in livestock. Recently, the toll-like receptor (TLR) has been identified as a candidate gene for milk traits in cows. So far, there is no information concerning the contribution of this gene in milk traits in sheep. This study was designed to investigate the TLR 4 gene polymorphisms in Barki ewes in Egypt and then correlate that with milk traits in order to identify potential single nucleotide polymorphisms (SNPs) for these traits in sheep. Methods: A part of the ovine TLR 4 gene was amplified in Barki ewes, to identify the SNPs. Consequently; Barki ewes were genotyped using polymerase chain reaction-single strand conformation polymorphism protocol. These genotypes were correlated with milk traits, which were the daily milk yield (DMY), protein percentage (PP), fat percentage (FP), lactose percentage, and total solid percentage (TSP). Results: Age and parity of the ewe had a significant effect (p<0.05 or p<0.01) on DMY, FP, and TSP. The direct sequencing identified a missense mutation located in the coding sequence of the gene (rs592076818; c.1710C>A) and was predicted to change the amino acid sequence of the resulted protein (p.Asn570Lys). The association analyses suggested a significant effect (p<0.05) of the TLR genotype on the FP and PP, while the DMY tended to be influenced as well (p = 0.07). Interestingly, the presence of the G allele tended to increase the DMY (+40.5 g/d) and significantly (p<0.05 or p<0.01) decreased the FP (-1.11%), PP (-1.21%), and TSP (-7.98%). Conclusion: The results of this study suggested the toll-like receptor 4 (TLR4) as a candidate gene to improve milk traits in sheep worldwide, which will enhance the ability to understand the genetic architecture of genes underlying SNPs that affect such traits.

한국인 ABO 유전자 다형성과 이상지질혈증의 연관성 (Association of ABO Genetic Polymorphisms and Dyslipidemia in Korean Population)

  • 송윤주;이성원;진현석;박상욱
    • 대한임상검사과학회지
    • /
    • 제56권1호
    • /
    • pp.66-72
    • /
    • 2024
  • 지질 대사장애는 임상에서 흔히 볼 수 있는 질환이다. 이상지질혈증(dyslipidemia)과 그 유병률은 전세계적으로 심혈관질환의 이환율 및 사망률과 밀접한 관련이 있다. 한국인 대상 40~64세 성인 중년층을 대상으로 ABO 유전자의 다형성과 이상지질혈증과의 연관성을 확인하기 위해 유전자 분석을 실시하였다. 본 연구는 한국인 유전체분석자료(Korean Association REsource, KARE)에서 총 6,750명의 피험자를 선정하였다. KARE 자료의 이상지질혈증 환자 4,403명과 정상 대조군 2,347명의 유전자형 데이터를 사용하여 ABO 유전자의 단일염기다형성(single nucleotide polymorphisms, SNPs)과 유전적 상관관계를 분석하였다. 그 결과 ABO 유전자 중 11개 SNPs 가 이상지질혈증과 통계적으로 유의미한 연관성을 나타내었다. 이 중 ABO 유전자의 rs8176707이 통계적으로 이상지질혈증과 가장 유의한 상관관계를 보였다(P-value=0.002, odds ratio=0.82, 95% confidence interval 0.78~0.86). ABO minor allele T는 이상지질혈증 위험을 감소시키는 것으로 나타났다. 본 연구는 ABO 유전자의 유전적 다형성과 이상지질혈증 사이의 유의미한 연관성을 밝힌 연구이다. 이러한 결과는 ABO의 SNPs가 이상지질혈증의 원인과 유전적 상관관계가 있음을 시사한다고 하겠다.