• Title/Summary/Keyword: Single linkage dendrogram

Search Result 5, Processing Time 0.02 seconds

Basic Studies on the Native Colored-Soybean Cultivars II. Classification of Collected Soybean Varieties by the Multivariate Analysis (유색 대두수집종의 특성 연구 제II보 밭밑콩 수집유색재래종의 다변량에 의한 품종분류)

  • 구자옥;이영만;신동영
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.3
    • /
    • pp.340-344
    • /
    • 1983
  • Taxonomic distances and Q correlations of all possible comparisons among thirty-two collected soybean varieties were calculated from the standardized mean of twenty-one characters. Ten varietal groups were classified by the single linkage clustering based on Q correlations. The means of Q correlations of intra-group were higher than those of inter-group. Each groups were characteristic in each mean of characters within varietal groups.

  • PDF

Genetic Variation and Polymorphism in Rainbow Trout, Oncorhynchus mykiss Analysed by Amplified Fragment Length Polymorphism

  • Yoon, Jong-Man;Yoo, Jae-Young;Park, Jae-Il
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.69-80
    • /
    • 2004
  • The objective of the present study was to analyze genetic distances, variation and characteristics of individuals in rainbow trout, Oncorhynchus mykis using amplified fragment length polymorphism (AFLP) method as molecular genetic technique, to detect AFLP band patterns as genetic markers, and to compare the efficiency of agarosegel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively. Using 9 primer combinations, a total of 141 AFLP bands were produced, 108 bands (82.4%) of which were polymorphic in AGE. In PAGE, a total of 288 bands were detected, and 220 bands (76.4%) were polymorphic. The AFLP fingerprints of AGE were different from those of PAGE. Separation of the fragments with low molecular weight and genetic polymorphisms revealed a distinct pattern in the two gel systems. In the present study, the average bandsharing values of the individuals between two populations apart from the geographic sites in Kangwon-do ranged from 0.084 to 0.738 of AGE and PAGE. The bandsharing values between individuals No.9 and No. 10 showed the highest level within population, whereas the bandsharing values between individuals No.5 and No.7 showed the lowest level. As calculated by bandsharing analysis, an average of genetic difference (mean$\pm$SD) of individuals was approximately 0.590$\pm$0.125 in this population. In AGE, the single linkage dendrogram resulted from two primers (M11+H11 and M13+H11), indicating six genetic groupings composed of group 1 (No.9 and 10), group 2 (No. 1, 4, 5, 7, 10, 11, 16 and 17), group 3 (No. 2, 3, 6, 8, 12, 15 and 16), group 4 (No.9, 14 and 17), group 5 (No. 13, 19, 20 and 21) and group 6 (No. 23). In AGE, the genetic distances among individuals of between-population ranged from 0.108 to 0.392. In AGE, the shortest genetic distance (0.108) displaying significant molecular differences was between individuals No.9 and No. 10. Especially, the genetic distance between individuals No. 23 and the remnants among individuals within population was highest (0.392). Additionally, in the cluster analysis using the PAGE data, the single linkage dendrogram resulted from two primers (M12+H13 and M11+H13), indicating seven genetic groupings composed of group 1 (No. 15), group 2 (No. 14), group 3 (No. 11 and 12), group 4 (No.5, 6, 7, 8, 10 and 13), group 5 (No.1, 2, 3 and 4), group 6 (No.9) and group 7 (No. 16). By comparison with the individuals in PAGE, genetic distance between No. 10 and No. 7 showed the shortest value (0.071), also between No. 16 and No. 14 showed the highest value (0.242). As with the PAGE analysis, genetic differences were certainly apparent with 13 of 16 individuals showing greater than 80% AFLP-based similarity to their closest neighbor. The three individuals (No. 14, No. 15 and No. 16) of rainbow trout between two populations apart from the geographic sites in Kangwon-do formed distinct genetic distances as compared with other individuals. These results indicated that AFLP markers of this fish could be used as genetic information such as species identification, genetic relationship or analysis of genome structure, and selection aids for genetic improvement of economically important traits in fish species.

Variation of Morphological Similarity between Rice Breeding Lines in the Different Fertilizer Levels (시비량에 따른 수도 계통간의 형태적 유사도 변이)

  • 이영만;구자옥
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.375-380
    • /
    • 1985
  • Single linkage dendrograms by Mahalanobis's D$^2$, Q correlation, and distance from Principal Component Analysis, respectively, were made to eight rice breeding lines in the none and high fertilizer levels. The dendrograms in the two fertilizer levels were similar in shape. The shape of dendrograms by D$^2$ and Q correlation were identical and they were very similar in shape to that by PCA in the both fertilizer levels.

  • PDF

Genetic Differences within and between Populations of Korean Catfish (S. asotus) and Bullhead (P. fulvidraco) Analysed by RAPD-PCR

  • Yoon, Jong-Man;Kim, Jong-Yeon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1053-1061
    • /
    • 2004
  • Of the 20 arbitrarily chosen primers, six oligonucleotides decamer primers were used on the basis of the number of the polymorphisms generated in catfish (Silurus asotus) from Yesan and bullhead (Pseudobagrus fulvidraco) from Dangjin in Korea. Six primers were used generating a total of 602 scorable bands in catfish and 195 in bullhead population, respectively, ranging in size of DNA fragments from less than approximately 100 to larger than 2,000 base pairs (bp). Six primers yielded 199 polymorphic fragments (33.1%) in catfish and 47 (24%) in bullhead, respectively. In the present study, a total of 328 common fragments (an average of 54.7 per primer) were observed in catfish population, whereas 84 (an average of 14.0 per primer) in bullhead. The total number of specific fragments in catfish and bullhead population were 76 and 64, respectively. In catfish population, random decamer, OPA-17 (GACCGCTTGT) generated the highest number of fragments (a total of 141) in comparison with other primers used, with an average of 11.8. The common bands in the molecular weight of 300 bp generated by random primer OPA-06 (GGTCCCTGAC) were present in every individuals in bullhead population. The major polymorphic bands in the molecular weight of 100 bp generated by OPA-17 were identified in lane 14, 15, 17, 18, 19 20 and 21, which were identifying species in bullhead population. The average bandsharing values (BS values) of all of the samples within catfish population ranged from 0.575 to 0.945, whereas 0.063-1.000 within bullhead population. The bandsharing value (index of similarity between individuals) between individual No. 5 and No. 9 showed the highest level within catfish population, whereas the bandsharing value between individual No. 1 and No. 2 showed the lowest level. The single linkage cluster analysis resulted from four primers, indicating four genetic groupings composed of group 1 (C1-C10, all of the catfish samples), group 2 (B11, B12, B13, B14, B16, B17, B18, B19), group 3 (B15) and group 4 (B20 and B21). The dendrogram reveals close relationships between individual identities within two species populations and individuals derived from the same ancestor, respectively. However, genetic distances between two species populations ranged from 0.124 to 0.333. The shortest genetic distance (0.042) displaying significant molecular differences was between individual No. 6 and No. 9 catfish population. The shortest genetic distance (0.033) displaying significant molecular differences also was between individual No. 18 and No. 19 in bullhead population. Reversely, the genetic distance of individual No. 20/21 among individuals in bullhead population was highest (0.333). This result showed that bullhead No. 20 and 21 were distinct from other individuals within bullhead population.

Bandsharing Values and Genetic Distances of Two Wild Shortnecked Clam, Ruditapes philippinarum Populations from the Yellow Sea Assessed by Random Amplified Polymorphic DNAs-Polymerase Chain Reaction

  • Yoon, Jong-Man;Kim, Yong-Ho
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • Genomic DNAs were extracted from the muscle of twenty-two specimens of two shortnecked clam, Ruditapes phifippinarum populations collected in Anmyeondo and Seocheon. Genetic differences within and between populations were analysed by random amplified polymorphic DNAs-polymerase chain reaction (RAPD-PCR) using twenty arbitrary decamer primers. Out of 20 primers, 6 generated a total of 1,111 major and minor RAPD bands from individuals of two sites, producing approximately 4.2 average polymorphic bands per primer in individuals from Anmyeondo and ranging in size from less than 50 to larger than 1,500 base pairs (bp). The electrophoretic analysis of RAPD products amplified showed moderate levels of similarity among the different individuals in Seo-cheon population. The average bandsharing values (BS value) of the samples within population from Anmyeondo ranged from 0.155 to 0.684, whereas it was 0.143∼0.782 within population from Seocheon. The average BS value between individuals No. 13 and No. 14 from Seocheon was 0.782 which was higher than that of those from Anmyeondo. The single linkage dendrogram resulted from three primers (OPA-08, -09 and -20), indicating six genetic groupings composed of group 1 (No.4, 8 and 10), group 2 (No. 18), group 3 (No.2, 5 and 7), group 4 (No. 1, 3, 6, 9, 11, 12, 13, 14, 15 and 17), group 5 (16, 19 and 20) and group 6 (No. 21 and 22). In the Seocheon population, the individual No. 18 clustered distinctly from the others of this population. The observed genetic distance between the two populations from Anmyeondo and Seocheon was more than 0.209 (0.247 and 0.275). The shortest genetic distance (0.094) displaying significant molecular differences was between individuals No. 13 and No. 14. Especially, the genetic distance between individuals No. 22 and the remnants among individuals in two geographical populations was highest (0.275). This result illustrated that individual No.22 is distinct from other individuals within two shortnecked populations. The different geographical features of two sites may have caused the genetic diversity in two shortnecked clam populations.